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The effect of substitution atoms on the energy spectrum and the electrical conductivity of graphene was investi-
gated in a Lifshitz one-electron tight-binding model. It is established that the ordering of impurity atoms results
in a gap in the energy spectrum of electrons whose width depends on the order parameter and on the magni-
tude of the scattering potential. It is shown that if the order parameter is close to its maximum value, there are
peaks associated with localized impurity states on the energy curve of the electron states density at the edges
of the energy gap. At the electron concentration at which the Fermi level enters the gap region, the electrical
conductivity is zero, and the metal-dielectric transition occurs. If the Fermi level falls in the region of the en-
ergy band, the electron relaxation time and electrical conductivity tend to infinity when the order parameter
reaches its maximum value. The analytical calculations of the electron density and of the electrical conductiv-
ity of graphene, made in the limiting case of weak scattering, are compared with the results of the numerical
calculations for different scattering potentials.
Key words: graphene, energy gap, density of states, ordering parameter, Green’s function, metal-insulator
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1. Introduction

Lately, the possibility of a targeted modification of graphene with the help of purposely-introduced
impurities, created defects, and atoms or chemical functional groups deposited on a surface has attracted
a particular attention. In this case, broad potentialities for a change in the physical properties of graphene
open up due to the controlled introduction of impurities using the method of ionic implantation. Thus,
graphene becomes a basis generating a new class of functional materials. Such materials sometimes find
unexpected applications in nanoelectromechanical systems, systems of accumulation of hydrogen, etc.
Surely, the main hopes are laid on graphene in connection with the expectation that in the nearest future it
has all capabilities of becoming a successor of silicon in electronic devices, which permits to significantly
increase the level of miniaturization and working frequencies thereof. The quasirelativistic spectrum of
charge carriers underlines the uniqueness of graphene, but hampers, at the same time, the use of graphene
in field transistors due to the absence of a gap in its spectrum. It is known that the impurities can induce
the appearance of a gap in the energy spectrum. The width of the gap depends on the type of impurities
and their concentration.

Most studies of the energy spectrum of graphene are based on the density functional theory. The most
significant achievements are related to the self-consistent meta-gradient approximation and to the method
of projection of adjoint waves [1] realized in the VASP and GAUSSIAN softwares [1]. The numerical
calculations executed by this method showed the opening of a gap in the energy spectrum of graphene
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caused by the presence of an impurity. However, clarification of the nature of this effect requires, in
addition to the mentioned numerical calculations, the analytical studies of the influence of impurities on
the energy spectrum and on the properties of graphene.

The electronic structures of the isolated monolayer of graphene, two- and three-layer graphenes and
graphene grown on ultrathin layers of hexagonal boron nitride (h-BN) were calculated in [2] within the
framework of the density functional theory with the use of the method of pseudopotential. It was shown
that the energy gap 57 meV in width appears in the graphene grown on a monolayer of h-BN.

Graphenes with impurities of aluminium, silicon, phosphorus, and sulphur were studied within the
analogous method in work [3], where it was shown, in particular, that graphene with a 3% impurity
of phosphorus has a gap 0.67 eV in width. In work [4] with the use of the QUANTUM-ESPRESSO
software, the possibilities of the opening of a gap in the energy spectrum of graphene at the introduction
of the impurities of boron and nitrogen (the gap width is 0.49 eV), as well as the impurities of atoms of
boron and atoms of lithium adsorbed on the surface (the gap width is 0.166 eV), were demonstrated.

It is obvious that it is insufficient to restrict ourselves by numerical calculations in order to understand
the nature of the influence of impurities on the energy spectrum and properties of graphene. They should
be also described within a simple but appropriate model that presents exact analytical solutions.

In the Lifshitz tight-binding one-electron model, the theory of reconstruction of the spectrum of
graphene caused by an increase in the concentration of point impurities was developed in works [5–8].
Moreover, the possibility of the metal-dielectric transition in such a system was predicted. The results
of the analytical consideration of a reconstruction of the spectrum were confirmed with the help of a
numerical experiment. This made it possible to verify the existence of a quasigap filled with localized
states and showed its dominant role in the localization of the scattering by pairs and triples of impurity
centers.

In [9, 10], the splitting in the energy spectrum of graphene with a zigzag boundary was studied. This
spectrum describes the electron waves that propagate along the boundary and decay with an increasing
distance from it. It is shown that the electronic spectra of graphene with isolated vacancies exhibit a
similar behaviour. The split electronic energy spectrum is accompanied by the formation of a sharp
resonance state on the local density curve. It was shown that a similar resonance also arises in the phonon
spectrum near the intersection point of the acoustic and optical branches of elastic waves polarized
perpendicular to the plane of the graphene monolayer. In the frequency range under consideration, these
phonons practically do not interact with differently polarized phonons, and also have high group velocities
and make a dominant contribution to the electron-phonon interaction. The presented results demonstrate
the possibility of increasing the critical temperature of the superconducting transition in graphene by a
controlled creation of defects, such as a vacancy or a zigzag border.

The numerical calculations within the Kubo-Greenwood quantum-mechanical formalism in the Lif-
shitz tight-binding one-electronmodelwere performed in [11–16] to study the influence of impurity atoms
or atoms adsorbed on the surface on the electronic structure and electrical conductance of graphene. In
those works, the method of reducing the Hamiltonian to the three-diagonal form was developed to study
the influence of completely ordered impurity atoms on the energy spectrum and electrical conductance
of graphene in the ballistic and diffusive modes of conductance. In work [13], it was found that the gap
0.45 eV in width appears in the energy spectrum of electrons of graphene deposited on a potassium
substrate. It was assumed in the paper that the appearance of this gap is associated with a change in
the symmetry of the crystal. This assumption was corroborated in work [17], where the influence of the
atomic ordering on the energy spectrum and electrical conductance of an alloy was analytically studied in
the Lifshitz tight-binding one-electron model. It was also established [17] that, for a long-range ordering
of the alloy, the gap arises in the energy spectrum of electrons. The gap width is equal to the difference
of the scattering potentials of components of the alloy. It was also found that metal-dielectric transition
appears in the alloy provided the Fermi level falls in the domain of the gap at a long-range atomic
ordering.

It is worth to note that the velocity of an electron at the Fermi level can decrease as Fermi level falls
in the domain of the gap. Moreover, when the gap appears in the energy spectrum of graphene for the
case where the Fermi level falls in the domain of the gap, the velocity of an electron at the Fermi level
can decrease. This leads to a decrease in the mobility and electrical conductance of electrons, which can
worsen the functional characteristics of graphene as a material for field transistors.
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Within the Lifshitz tight-binding one-electronmodel, the influence of the ordering of impurities on the
energy spectrum and electrical conductance of graphene was considered in work [18]. It was established
that the ordering of substitutional atoms on the nodes of the crystal lattice causes the appearance of a
gap η |δ | in width in the energy spectrum of graphene centered at the point yδ, where η is the ordering
parameter, δ is the difference of the scattering potentials of impurity atoms and carbon, and y is the
impurity concentration. If the Fermi level falls in the domain of the gap, then the electrical conductance
σαα → ∞ at the ordering of graphene, i.e., the metal-dielectric transition arises. If the Fermi level is
located outside the gap, then the electrical conductance increases with the order parameter η according to
the rule σαα ∼ (y2 − 1

4η
2)−1. As the ordering of impurity atoms η→ 1 at the concentration y = 1/2, the

electrical conductance of graphene σαα → ∞, i.e., graphene transits to the state of ideal conductance.
We note that the conclusions in work [18] were based on the results of analytical studies of the energy
spectrum and electrical conductance of graphene performed in the approximation of coherent potential.
However, the convergence region of the decomposition cluster used in [18] for the Green function, and the
applicability of the coherence potential approximation have not been analyzed. Both themes are studied
in the present work. The features of the energy spectrum of electrons in the region of the gap arising
upon the ordering of impurity atoms are investigated herein.

2. Theoretical model

The Hamiltonian in a one-electron Lifshitz strong bond model describing single-electron states of
graphene with substitutional impurity can be represented as [18]

H =
∑
ni

|ni〉vni 〈ni | +
∑

ni,n′i′,ni

|ni〉hni,n′i′ 〈n′i′ |, (2.1)

where hni,n′i′ is a non-diagonal matrix element of the Hamiltonian (jump integral) in the Vane repre-
sentation, which in the assumed approximation of the diagonal disorder is independent of the random
distribution of atoms. The diagonal matrix element vni is vA or vB depending on whether atom A or B is
at the node ni, n is the number of elementary cell, i is the number of the sublattice node in the unit cell.

Add and subtract in expression (2.1) the translational invariant operator
∑

ni |ni〉σi 〈ni |, where σi is
the diagonal matrix element of the Hamiltonian of some effective ordered medium (coherent potential),
which depends on the sublattice number. As a result, the graphene Hamiltonian can be represented as
follows:

H = H̃ + Ṽ,

H̃ =
∑
ni

|ni〉σi 〈ni | +
∑

ni,n′i′,ni

|ni〉hni,n′i′ 〈n′i′ |,

Ṽ =
∑
ni

ṽni , ṽni = |ni〉(vni − σi)〈ni |. (2.2)

The Green’s belated function is an analytic function in the upper half-plane of the complex energy z
values. The function is determined by the expression

G(z) = (z − H)−1. (2.3)

Green’s function satisfies the equation
G = G̃ + G̃TG̃, (2.4)

Green’s function G̃ of the effective medium corresponds to the Hamiltonian H̃ in (2.2). The T in the
scattering matrix can be represented as an infinite series [17]

T =
∑
(n1i1)

tn1i1 +
∑

(n1i1),(n2i2)

T (2) n1i1,n2i2 + . . . . (2.5)
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Here,
T (2)n1i1,n2i2 =

[
I − tn1i1G̃tn2i2G̃

]−1
tn1i1G̃tn2i2

[
I + G̃tn1i1

]
(2.6)

and the scattering operator on one node

tn1i1 =
[
I − ṽinG̃

]−1
ṽin , (2.7)

I is the identity matrix. The members of series (2.5) describe the processes of multiple scattering of
electrons in clusters of one, two, three, etc. scattering centers.

As was shown in work [17], the contributions of electrons scattering processes on clusters to the
density of states and to the electrical conductance decrease as the number of atoms in a cluster increases.
These contributions are guided by some small parameter pi(ε). The parameter pi(ε) is small in a wide
region of the changes of crystal characteristics, except for narrow energy intervals on the edges of the
spectrum and on the edges of the energy gap. The expression for the specified pi(ε) parameter is shown
below.

Neglecting the contribution of scattering processes on clusters of three or more atoms that are small
by the specified parameter pi(ε), the density of one-electron states of graphene can be represented as [18]

g (ε) =
1
ν

∑
i,λ

Pλ0igλ0i (ε) ,

gλ0i(ε) = −
2
π

Im
{
G̃ + G̃tλ0iG̃ +

∑
(l j),(0i),λ′

Pλ
′l j/λ0iG̃

[
tλ
′l j + T (2)λ0i,λ′l j

]
G̃

}
0i,0i

, (2.8)

ν = 2 is the number of graphene sublattices.
Using the Cuban-Greenwood formula and neglecting the contribution of scattering processes on

clusters of three or more atoms, we present the static electrical conductivity of graphene (T = 0) [18] as
follows:

σαβ = −
e2~

2πΩ1

∑
s,s′=+,−

(2δss′ − 1)
∑
i

(
[vβK̃(εs, vα, εs

′

)]

+
∑
λ

Pλ0iK̃(εs
′

, vβ, ε
s)tλ0i(εs)K̃(εs, vα, εs

′

)tλ0i(εs
′

)

+
∑
λ

Pλ0i
∑

l j,0i,λ′
Pλ
′l j/λ0i

{
[K̃(εs

′

, vβ, ε
s)vαG̃(εs

′

)]T (2)λ0i,λ′l j(εs
′

)

+ [K̃(εs, vα, εs
′

)vβG̃(εs)]T (2)λ0i,λ′l j(εs) + K̃(εs
′

, vβ, ε
s)

[
tλ
′l j(εs)K̃(εs, vα, εs

′

)tλ0i(εs
′

)

+ [tλ0i(ε
s) + tλ

′

l j (ε
s)]K̃(εs, vα, εs

′

)T (2)λ0i,λ′l j(εs
′

) + T (2)λ
′l j,λ0i(εs)K̃(εs, vα, εs

′

)tλ0i(εs
′

)

+ T (2)λ
′l j,λ0i(εs)K̃(εs, vα, εs

′

)T (2)λ0i,λ′l j(εs
′

)

+ T (2)λ
′l j,λ0i(εs)K̃(εs, vα, εs

′

)T (2)λ
′l j,λ0i(εs

′

)

]})
0i,0i

���
ε=µ

. (2.9)

K̃(εs, vα, εs
′

) = G̃(εs)vαG̃(εs
′

), G̃(ε+) = G̃r(ε), G̃(ε−1 ) = G̃a(ε) = G̃∗r (ε), G̃r(ε), G̃a(ε) are retarded and
advanced Green functions. Ω1 = 2Ω0 is the graphene unit cell volume, Ω0 is the one atom volume.

G̃njn′ j′(ε) =
1
N

∑
k

G̃ j j′(k, ε) exp[ik(rn′ j′ − rnj)], (2.10)

G̃ j j′(k, ε) is Fourier transform of Green’s function, rnj is position vector of node nj. The wave vector k
changes within the Brillouin zone.

The operator of electron velocity α-projection is given by the expression

υαii′(k) =
1
~

∂hii′(k)
∂kα

, (2.11)
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Fourier transform of jump integral hj j′(k) is calculated for the nearest atom neighbours

hj j′(k) = γ1
∑
n′,n

exp[ik(rn′ j′ − rnj)], (2.12)

γ1 = (ppπ) is the jump integral [19], rnj is position vector of node nj.
The Fermi level µ is determined from the equation

〈Z〉 =

µ∫
−∞

g(ε)dε, (2.13)

here, 〈Z〉 is the average number of electrons per atom whose energy values belong to the energy band.
In expressions (2.8), (2.9), Pλ0i is the filling probability of node 0i of the crystal lattice i = 1, 2 by

atoms of the sort λ = A, B

PB01 = y1 = y +
1
2
η, PB02 = y2 = y −

1
2
η, PA01 = 1 − PB01. (2.14)

y is concentration of impurity atoms, η is far order parameter.
In expressions (2.8), (2.9) Pλ

′l j/λ0i is the probability of filling the node l j by atom sort λ′ provided
that the atom of the sort λ fills the node 0i. Pλ

′l j/λ0i is the parameter of paired interatomic correlations
in atoms of crystalline lattice nodes filled with atoms.

The probabilities are determined by the interatomic pair correlations εBB
l j,0i via [20, 21]

Pλ
′/λ

l j,0i = Pλ
′

l j +
εBB
l j,0i

Pλ0i
(δλ′B − δλ′A)(δλB − δλA), (2.15)

where δ is the Kronecker delta-function. Note that the interatomic pair correlations also satisfy

εBBl j,0i = 〈(c
B
l j − cBj )(c

B
0i − cBi )〉. (2.16)

Here, cB
l j
is bit randomized number which takes the value of one if the sort atom B is in the node or zero

otherwise, AB
j = 〈A

B
0j〉 = PB0j . Brackets mean the averaging over the distribution of impurity atoms at

the nodes of the crystalline lattice.
Coherent potential is determined by the condition 〈tn1i1〉 = 0, hence the equation for the coherent

potential [18]

σi = 〈υi〉 − (υA − σi)G̃0i,0i(ε)(υB − σi); 〈υi〉 = (1 − yi)υA + yiυB. (2.17)

Putting υA = 0 in expression (2.17), we obtain

〈υi〉 = yiδ, (2.18)

here,
δ = υB − υA , (2.19)

the difference of scattering potentials of graphene components.
For analytical description of the energy spectrum and the electrical conductivity of graphene, we

consider only the first constituents in expressions (2.8), (2.9), which make a major contribution to the
density of states and to the electrical conductivity. Thus,

g(ε) = −
2
πν

Im
∑
i

G̃0i,0i(ε) = −
2
πνN

Im
∑
i,k

G̃ii(k, ε), (2.20)

σαα = −
e2~

2πV1

∑
i

{
υα[G̃(ε) − G̃∗(ε)]υα[G̃(ε) − G̃∗(ε)]

}
0i,0i

= −
e2~

2πV1N

∑
i,k

{
υα(k)[G̃(k, ε) − G̃∗(k, ε)]υα(k)[G̃(k, ε) − G̃∗(k, ε)]

}
0i,0i . (2.21)
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The wave vector in formulae (2.20), (2.21) varies within the Brillouin zone. Fourier transform of Green’s
function

G̃11(k, ε) =
ε − σ2
D(k, ε) , G̃12(k, ε) =

h21(k)
D(k, ε) ,

G̃21(k, ε) =
h12(k)
D(k, ε) , G̃22(k, ε) =

ε − σ1
ε − σ2

G̃11(k, ε),

D(k, ε) = (ε − σ1)(ε − σ2) − h12(k)h21(k). (2.22)

Fourier transform of the jump integral hii′(k) is calculated for the nearest atom neighbours.
In this model, the value of the wave vector lying in the regions around the Dirac points is mainly due

to the energy spectrum of electrons in the middle of the zone. The Brillouin zone has two areas of this
kind. For these areas

h12(k) = h21(k) = ~υFk, (2.23)

υF =
3 |γ1 |a0

2~ is the electron velocity at the Fermi level, γ1 = (ppπ) is the jump integral [19], a0 is the
distance between the nearest neighbours.

Substituting (2.22), (2.23) in (2.20) and replacing the sum over the wave vector by an integral [18]

G̃01,01(ε) = −
S1(ε − σ2)

π~2υ2
F

ln

√
1 −

w2

(ε − σ1)(ε − σ2)
,

G̃02,02(ε) = −
S1(ε − σ1)

π~2υ2
F

ln

√
1 −

w2

(ε − σ1)(ε − σ2)
, (2.24)

w = 3|γ1 | is is the half-width of the energy band of pure graphene, S1 =
3
√

3a2
0

2 is the area of the unit cell
of graphene.

Consider the effect of the ordering atoms on the energy spectrum of graphene electrons with an
admixture of substitution in the limiting case of weak scattering |δ/w | � 1. In this case, the solution of
the system of equations (2.17), (2.24) is [18]

G̃01,01(ε) = −
S1(ε − σ

′
2)

π~2υ2
F

ln

√
1 −

w2

(ε − σ′1)(ε − σ
′
2)
,

G̃02,02(ε) = −
S1(ε − σ

′
1)

π~2υ2
F

ln

√
1 −

w2

(ε − σ′1)(ε − σ
′
2)
,

σ′1 = y1δ − y1(1 − y1)δ
2 S1(ε − y2δ)

π~2υ2
F

ln

√
1 −

w2

(ε − y1δ)(ε − y2δ)
,

σ′2 = y2δ − y2(1 − y2)δ
2 S1(ε − y1δ)

π~2υ2
F

ln

√
1 −

w2

(ε − y1δ)(ε − y2δ)
,

sign(ε − σ′1) = − sign(ε − σ′2); (2.25)

and

G̃01,01(ε) = −
S1(ε − σ

′
2)

π~2υ2
F

ln

√
w2

(ε − σ′1)(ε − σ
′
2)
− 1 − i

S1 |ε − σ
′
2 |

2~2υ2
F

,

G̃02,02(ε) = −
S1(ε − σ

′
1)

π~2υ2
F

ln

√
w2

(ε − σ′1)(ε − σ
′
2)
− 1 − i

S1 |ε − σ
′
1 |

2~2υ2
F

,

σ′1 = y1δ − y1(1 − y1)δ
2 S1(ε − y2δ)

π~2υ2
F

ln

√
w2

|(ε − y1δ)(ε − y2δ)|
− 1,
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σ′′1 = −y1(1 − y1)δ
2 S1 |ε − y2δ |

2~2υ2
F

,

σ′2 = y2δ − y2(1 − y2)δ
2 S1(ε − y1δ)

π~2υ2
F

ln

√
w2

|(ε − y1δ)(ε − y2δ)|
− 1,

σ′′2 = −y2(1 − y2)δ
2 S1 |ε − y1δ |

2~2υ2
F

,

sign(ε − σ′1) = sign(ε − σ′2). (2.26)

In (2.25)–(2.26) equations, σ′i and σ′′i are the real and imaginary parts of the coherent potentials σi ,
i = 1, 2.

The analysis of formulae (2.25)–(2.26) shows that if the impurity atoms are ordered in the crystal
lattice of graphene then in the energy spectrum there is a gap of width η |δ | and a center of gap is at yδ.
The energy values of ε corresponding to the edges of the energy gap are determined from the equations
ε−σ′1 = 0, ε−σ′2 = 0. It follows from equations (2.14) that the maximum value of the ordering parameter
ηmax = 2y, y < 1/2. At the complete ordering of the impurity atoms, the width of the gap is equal to
2y |δ |, proportional to the concentration of the impurity y and the modulus of scattering potential of the
graphene components δ. For y = 1/2, the width of the gap takes the maximum value. For δ > 0 and
δ < 0, the gap is located respectively to the right and to the left of the Dirac point on the energy scale.
As can be seen from formulae (2.20), (2.25), the density of electron states g(ε) = 0 in the approximation
of the coherent potential for this region of energy values.

As it follows from expressions (2.20), (2.26), in the vicinity of the edge of the gap, the density of states
tends to infinity. This is due to the presence of the second components in the expressions for coherent
potentials σ′1, σ

′
2 (2.26). The width of this energy region is [18]����∆ε(η)w

���� = w

η |δ |
exp

[
−

2yπw2

3
√

3ηδ2(1 − y + η/2)(y − η/2)

]
; 0 < η 6 2y. (2.27)

The peak width estimation (2.27) is made on condition that the density of states on the slope of the peak
is twice its value at the point of the adjacent minimum.

Beyond the specified peak, the density of states increases linearly with an increasing distance to the
gap edge [18]

g(ε) =
S1(ε − yδ)

π~2υ2
F

,

����∆ε(η)w

���� < ����ε − σ′iw

���� 6 ���� δw ���� . (2.28)

If the Fermi level falls into the gap region, then the number of free charge carriers tends to zero.
In this case, when the impurity is ordered, the electrical conductivity σαα → 0, as it follows from
formulae (2.21), (2.25), i.e., a metal-dielectric transition occurs.

Let us explore the electrical conductivity of graphene when the Fermi level is outside the gap.
Substituting (2.22), (2.23) in (2.20) and replacing the sum over the wave vector by an integral [18], we
obtain

σαα =
2e2~υ2

F

π2a2
0d

(
y2 − 1

4η
2
)
δ2
. (2.29)

Where d is the thickness of graphene. The d factor in the denominator of the right-hand side of for-
mula (2.29) can be omitted, since the expression for the electrical resistance of graphene is reduced.

In [17] it is shown that the contribution of electron scattering processes on clusters to the density of
states and the electrical conductance is guided by some small parameter pi(ε), except for narrow energy
intervals on the edges of the spectrum and on the edges of the energy gap. In [18], an analytical study
of the effect of impurity ordering on the energy spectrum and the electrical conductance of graphene
in the approximation of coherent potential was executed. In order to estimate the corrections of this
approximation caused by the contribution of electron scattering processes by clusters of two, three, etc.
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atoms, the following parameter was introduced in [22]

pi (ε) =
���� 〈[t0i (ε)]2

〉 ∑
l j,0i

G̃0i,l j (ε) G̃l j,0i (ε)

����;〈
[t0i (ε)]2

〉
= (1 − yi) [tA0i (ε)]2 + yi[tB0i (ε)]2. (2.30)

This parameter was analyzed in [17], where the following representation thereof was presented

pi (ε) =
���� Qi(ε)

1 +Qi(ε)

���� ;
Qi(ε) = −

〈
[t0i(ε)]2

〉
1 +

〈
[t0i(ε)]2

〉 [
G̃0i,0i(ε)

]2

{
1

1 +
〈
[t0i(ε)]2

〉 [
G̃0i,0i(ε)

]2
d
dε

G̃0i,0i(ε) +
[
G̃0i,0i(ε)

]2
}
.

(2.31)

The parameter pi is small, with the exception of narrow intervals of energy values at the edges of the
gap. As it follows from the formula (2.26), the energy value tends to the energy of the edge of the gap
d Im G̃0i,0i(ε)/ε and the parameter pi →∞ (2.31).

The parameter pi(ε) takes on values 1/2 6 pi(ε) 6 1 in a narrow range of energy values at the edge
of the energy gap ����∆ε′(η)w

���� = 27
π

(
y2 −

1
4
η2

) [
(1 − y2) −

1
4
η2

]
η

(
δ

w

)5
, (2.32)

the expression is obtained by (2.7), (2.26), (2.31).
Thus, the processes of scattering on clusters give a significant contribution to the density of states

at the energies of the electrons lying in the interval (2.19). We note that formulae (2.28), (2.29) for the
density of states and electrical conductance of graphene cannot be used, if the Fermi level falls in the
interval of energies (2.32) at the gap edges.

The above expressions (2.28), (2.29) were obtained for the case of a small value of the scattering
potential |δ/w | � 1. The influence of the ordering of impurity atoms on the energy spectrum and the
electrical conductivity of graphene for an arbitrary value of the scattering potential is more complex.

3. Results

Figure 1 shows the numerical calculation results of the density of state g(ε) of graphene, performed
according to (2.8) for the following values: the concentration of substitutional impurity y = 0.2, the
scattering potential δ/w = −0.2 and δ/w = −0.6, the ordering parameter η = 0 and different values of
paired interatomic correlations in the first coordination sphere εBB

l j0i = ε
BB. Energy values are given in

units of half-width of the energy band w. The electron density of states g(ε) of graphene (figure 1, solid
curve) is calculated in the approximation of the coherent potential, where only the first component of
the sum in the formula (2.8) is taken into account. The dotted curve shows the behaviour of the density
of states g(ε) calculated with regard to the scattering processes of the pairs of atoms located within the
first coordination sphere, for the case of completely disordered arrangement of impurity atoms on the
graphene lattice, εBB = 0, η = 0. The dotted curve and dash-dotted curve show the density of states g(ε)
calculated with regard to the scattering processes of the pairs of atoms if the paired interatomic correlation
εBB = −0.05 and εBB = −0.1, the order parameter η = 0. The curve describing the density of electron
states in the approximation of the coherent potential and the curves taking account of the scattering
processes on the pairs of atoms coincide in the case of small values of the scattering parameter (figure 1,
δ/w = −0.2). In the case δ/w = −0.6 (on the right-hand side figure 1), there occurs a characteristic dip
of the density of state, whose value increases with an increase of the correlation parameter εBB.

The values of the density of states g(ε) were also calculated with respect to the scattering processes
on the pairs of atoms, which are located within three coordination spheres and within ten coordination
spheres. The results practically coincide with the results of calculations that take into account the
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δ/w = −0.2 δ/w = −0.6

Figure 1. (Colour online) The dependence of the density of electronic states g(ε) on energy ε. The
value of the concentration of substitutional impurity y = 0.2, the scattering potential δ/w = −0.2 on the
left-hand side (lhs) and δ/w = −0.6 on the right-hand side (rhs), the ordering parameter η = 0, different
values of the parameter of pair interatomic correlations εBB

l j,0i = ε
BB. The density of states calculated in

the approximation of the coherent potential (solid line) and taking account of the scattering processes on
the pairs of atoms within the first coordination sphere: completely disordered arrangement of impurity
atoms εBB = 0 (dotted line), with the interatomic pair correlations εBB = −0.05 (dashed line) and with
εBB = −0.1 (dash-dotted line).

scattering on the pairs within the first coordination sphere (figure 1). Hence, we can conclude that the
area of the influence of impurity electronic states of graphene in the specified model is limited by the first
coordination sphere for the case of the concentration of substitutional impurity not more than y = 0.2.

Figure 2 shows a plot of the density of states g(ε) vs. energy ε [figure 2 (a)] and a plot of conductivity
σxx(µ) · d vs. Fermi level µ, d is the thickness of the graphene layer [figure 2 (b), figure 2 (c)]. The energy
and the Fermi level are given in the half-width energy band. g(ε) and σxx(µ) calculations are executed in
accordance with (2.8), (2.9). The concentration of substitutional impurity y = 0.2, the order parameter
η = 0.3, the parameter of pair interatomic correlations εBB = 0, the scattering potential δ/w = −0.2
(figure 2, lhs) and δ/w = −0.6 (figure 2, rhs). σxx(µ) · d is given in units e2 · ~−1. An electrical resistance
of the graphene layer

R =
1

σxxd
l
L
, (3.1)

where l is the length of the graphene layer along the x-axis, L is the width of the layer. The x-axis is
directed from the carbon atom to its nearest neighbour.

With the ordering of the substitutional impurity atoms, there is a gap in the density of states (figure 2),
the order parameter η = 0.3. In the region of gap the density of states g = 0. The electrical conductivity
of graphene σxx(µ) for the Fermi level lying in the gap region is zero. For the Fermi level outside the gap
region, the electrical conductivity of graphene differs from zero and increases with increasing the density
of states on Fermi level. In contrast to the case of weak scattering |δ/w | � 1 described above, for which
the gap width increases linearly with increasing scattering potential |δ/w |, the dependence of the energy
gap width on the case of strong scattering is more complex. The width of the slit decreases with increasing
absolute value of the scattering potential (figure 2). The dependence of electrical conductivity on the
scattering potential and the order parameter is also more complex than in the case of weak scattering, for
which the electrical conductivity is described by the above formula (2.29).

In order to find out the nature of the dependence of the electrical conductivity on the values of
the scattering potential δ and the order parameter η on figure 3 are given the electrical conductivity
of graphene σxx(µ) vs. the ordering parameter of impurity atoms η for different magnitude δ of the
scattering potential. The number of electrons per atom whose energy values are in the region of the
energy band is equal 〈Z〉 = 1.01. At this value 〈Z〉 the Fermi level µ lies to the right of the energy gap.
Figure 3 (b) shows the Fermi level µ(η) depending on the ordering parameter of the impurity η. The
value of the Fermi level µ(η) is calculated by the formula (2.13). Figure 3 (c) show the dependence of
the partial density of states gi(µ) at the Fermi level on the impurity ordering parameter η, i is a sublattice
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δ/w = −0.2 δ/w = −0.6

(a)

(b)

(c)

Figure 2. (Colour online) (a) density of states g(ε) as a function of energy ε, (b) conductivity σxx(µ) · d
as a function of Fermi level, d is the thickness of graphene layer; (c) plot (b) enlarged on the vertical
axis shown in the region of values close to the origin. The scattering parameter δ/w = −0.2 (lhs) and
δ/w = −0.6 (rhs). The scattering parameter δ/w = −0.2 (lhs) and δ/w = −0.6 (rhs). The concentration
of substitutional impurity y = 0.2, the order parameter η = 0.3. Blue line presents calculations in the
approximation of the coherent potential. Red line, calculations taking into account the electron scattering
processes on the pairs of atoms of the first coordination sphere.

number. Figure 3 (d) show the dependence of the imaginary part of the coherent potential σ′′i (µ) at the
Fermi level on the ordering parameter η.

As can be seen from figure 3, the electrical conductivity of graphene increases with increasing the
ordering of the impurity η, which is caused mainly by the increase in the density of states at the Fermi
level. To find out the nature of the change in the electrical conductivity of graphene σxx(µ) with the
change of the impurity ordering parameter η, we turn to the limiting case of weak scattering |δ/w | � 1.

In the coherent potential approximation for the case of weak scattering |δ/w | � 1 we get from (2.9)

σαα =
e2~

3Ω0

∑
i

gi(µ) |υα12(µ)|
2

|σ′′i (µ)|
. (3.2)

For three-dimensional crystals with a simple lattice in the approximation of the effective mass by
substituting in (3.2) the expressions for g(µ) and υα(µ), the formula takes on a well-known form

σαα = e2nτ(µ)/m∗, (3.3)
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δ/w = −0.2 δ/w = −0.6

(a)

(b)

(c)

(d)

Figure 3. (Colour online) (a) Conductivity σxx(µ) · d, (b) Fermi level µ, (c) partial density of states gi(µ)
(open circles — g1(µ), filled circles — g2(µ)) and (d) imaginary part of the partial coherent potential
σ′′i (µ) (open circles — σ′′1 (µ), filled circles — σ′′2 (µ)) as functions of order parameter η. The sublattice
i = 1 contains impurity atoms and the sublattice i = 2 contains only carbon atoms in the case of complete
ordering. The concentration of substitutional impurity y = 0.2, the scattering parameter δ/w = −0.2 (on
the left-hand side) and δ/w = −0.6 (on the right-hand side).

n is the number of electrons per unit volume whose energy is less than the Fermi level, m∗ is the electron
effective mass. τ(µ) is the relaxation time of the electronic states, which is determined by the ratio

|σ′′(µ)|τ(µ) = ~. (3.4)
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In the case of weak scattering |δ/w | � 1, the numerical calculation σxx(µ) is qualitatively in good
agreement with the formulae (2.30), (3.2), (2.29). When the order parameter η is directed to its maximum
value, the electrical conductivity σxx(µ) tends to infinity. As can be seen from formula (3.2), this is due to
an increase in the state density at the Fermi level g2(µ) and an increase in the relaxation time as the order
parameter η increases (with η→ ηmax = 2y the imaginary part of the coherent potential σ′′2 (µ) → 0).

We note that formulae (2.8), (2.9) for the density of states and electrical conductance of graphene
cannot be used, if the Fermi level falls in the interval (2.32) of energies at the gap edges. The density of
states values that are calculated taking into account the scattering processes on the pairs of atoms, which
are located within the three coordination spheres and within the ten coordination spheres, coincide with
the results of calculations which take into account the scattering on the pairs within the first coordination
sphere. The region of impurity electronic states of graphene in the specified model is limited by the space
of the first coordination sphere.

In order to describe the energy spectrum and the electrical conductivity of graphene with impurities
we used the method of the theory of disordered systems. This method is based on the cluster decompo-
sition for the one-particle Green function (state density) and the two-particle Green function (electrical
conductivity). For a zero one-node approximation, a coherent potential approximation is chosen which
describes the state of the electron in some efficient ordered environment. Herein below we present the
corrections to the approximation of the coherent potential, which are due to the contribution of electron
scattering processes on clusters of two, three, etc. atoms. In [17, 22], it has been shown that the con-
tribution of scattering processes on a cluster decreases with an increase in the number of atoms in the
cluster by some small parameter. This parameter is small in the wide range of variation of the system
characteristics except for narrow energy intervals at the edges of the spectrum and the edges of the gap
(2.32) that occurs when the impurity is ordered. As shown in [17, 22] these areas (2.32) are the regions
of localization of electronic states. In the Van Hove regions of the energy spectrum of the pure crystal,
the peaks on the state density widens due to the splitting of energy levels while reducing the symmetry
of the crystal with the introduction of disordered impurity atoms. However, the Van Hove regions do not
always coincide with the regions of localization of electronic states as in the case for binary alloys with
BCC lattice [17] or graphene with a substitutional impurity (figure 2).

4. Conclusions

In the Lifshitz tight-binding one-electron model, the influence of substitutional impurity atoms on
the energy spectrum and electrical conductance of graphene is studied. It is established that the ordering
of substitutional impurity atoms on the nodes of the crystal lattice causes the appearance of the gap in the
energy spectrum of graphene η |δ | in width centered at the point yδ, where η is the parameter of ordering,
δ is the difference of the scattering potentials of impurity atoms and carbon atoms, y is the impurity
concentration.

It is shown that if the ordering parameter η is close to ηmax = 2y, y < 1/2 then the density of electron
states has peaks on the edges of the energy gap. Those peaks correspond to impurity levels.

If the Fermi level falls in the region of the gap, then the electrical conductance σαα → 0 at the
ordering of graphene, i.e., the metal-dielectric transition arises.

If the Fermi level is located outside the gap, then the electrical conductance increases with the
parameter of order η. At the complete ordering of substitutional impurity η → ηmax = 2y, the electrical
conductivity σαα → ∞, imaginary part of the coherent potential σ′′2 (µ) → 0 (sublattice i = 2 contains
only carbon atoms in the case of complete ordering) and the relaxation time τ →∞.

The analytical expressions of the density of electron states and the electrical conductivity of graphene
obtained in the case of weak scattering |δ/w | � 1 are compared with the results of numerical calculations
for a different scattering potential |δ/w |, w is the half-width of the energy band. The numerical calculation
shows that the area of influence of impurity electronic states of graphene in the specifiedmodel is spatially
limited by the first coordination sphere.
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Енергетичний спектр та електропровiднiсть графену з

домiшкою замiщення

С.П. Репецький1, I.Г. Вишивана1, С.П. Кручинiн2, Р.М. Мельник3, А.П. Полiщук4
1 Київський нацiональний унiверситет iменi Тараса Шевченка, Iнститут високих технологiй,
просп. Академiка Глушкова, 4-г, 03022 Київ, Україна

2 Iнститут теоретичної фiзики iм. М.М. Боголюбова НАН України,
вул. Метрологiчна, 14-б, 03680 Київ, Україна

3 Нацiональний унiверситет “Києво-Могилянська академiя”, вул. Г. Сковороди, 2, 04070 Київ, Україна
4 Нацiональний авiацiйний унiверситет, Аерокосмiчний факультет,
просп. Космонавта Комарова, 1, 03058 Київ, Україна
На одноелектроннiй моделi сильного зв’язку Лiфшиця дослiджено вплив атомiв домiшки замiщення на
енергетичний спектр та електричну провiднiсть графену. Встановлено, що впорядкування атомiв домi-
шки приводить до виникнення щiлини в енергетичному спектрi електронiв, ширина якої залежить вiд
параметра порядку та величини потенцiалу розсiяння. Показано, якщо параметр порядку близький до
свого максимального значення, на кривiй енергетичної залежностi густини електронних станiв на краях
енергетичної щiлини виникають пiки, пов’язанi з локалiзованими домiшковими станами. При електрон-
нiй концентрацiї, за якої рiвень Фермi попадає в область щiлини, електропровiднiсть рiвна нулю, вiдбува-
ється перехiд метал-дiелектрик. Якщо рiвень Фермi попадає в область енергетичної зони, час релаксацiї
електронiв i електропровiднiсть прямують до нескiнченностi при прямуваннi параметра порядку до сво-
го максимального значення. Аналiтичнi розрахунки густини електронних станiв та електропровiдностi
графену, виконанi в граничному випадку слабкого розсiяння, порiвнюються з результатами числових
розрахункiв для рiзних потенцiалiв розсiяння.
Ключовi слова: графен, енергетична щiлина, густина станiв, параметр порядку, функцiя Грiна, перехiд

метал-дiелектрик
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