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Abstract: This paper presents a new method of describing the electronic spectrum and electrical
conductivity of disordered crystals based on the Hamiltonian of electrons and phonons. Electronic
states of a system are described by the tight-binding model. Expressions for Green’s functions and
electrical conductivity are derived using the diagram method. Equations are obtained for the vertex
parts of the mass operators of the electron—electron and electron-phonon interactions. A system of
exact equations is obtained for the spectrum of elementary excitations in a crystal. This makes it
possible to perform numerical calculations of the energy spectrum and to predict the properties of the
system with a predetermined accuracy. In contrast to other approaches, in which electron correlations
are taken into account only in the limiting cases of an infinitely large and infinitesimal electron
density, in this method, electron correlations are described in the general case of an arbitrary density.
The cluster expansion is obtained for the density of states and electrical conductivity of disordered
systems. We show that the contribution of the electron scattering processes to clusters is decreasing,
along with increasing the number of sites in the cluster, which depends on a small parameter.

Keywords: electronic spectrum; electrical conductivity; disordered crystals; the Hamiltonian of
electrons and phonons; Green’s functions; the temperature Green’s functions; diagram technics; the
mass operator of the Green’s function; density of states; free energy

1. Introduction

Advances in the description of disordered systems are mainly due to the development
of the pseudopotential method [1]. However, due to the nonlocal nature of the pseudopo-
tential, there is a problem of portability of the pseudopotential. It is impossible to use
nuclear potentials, determined by the properties of some systems, in order to describe other
systems. The use of the theory of Vanderbilt ultra-soft potentials [2,3] and the method of
projector-augmented waves proposed by Blochl [4,5], allowed for achieving fundamental
progress in investigating the electronic structure and the properties of the system. In the
augmented-wave projector method, the wave function of the valence states of an electron
(all-electron orbital) is expressed in terms of a pseudo-wave function. The pseudo wave
function is expanded in a series of pseudo partial wave functions. The wave function is
expanded in a series of partial wave functions with the same coefficients as in the expression
for the pseudo wave function. Partial wave functions are described by the Schrodinger
equation for non-interacting atoms. The expression for the pseudo Hamiltonian, as an equa-
tion for the pseudo wave function, is derived by minimizing the full energy functional. This
approach was further developed through the use of the generalized gradient approximation
proposed in [6-10]. The paper [10] describes the application of this method for calculating
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the electronic structure of crystals and molecules using the VASP and GAUSSIAN software
packages, respectively.

It should be noted that in [11-19], the crystals electronic structure was carried out,
including the Coulomb long-range interaction between electrons of different sites on
the crystal lattice, thanks to a method based on the tight-binding model [20,21] and the
functional density theory. However, such methods are suitable only for describing crystals
characterized by ideal ordering. In disordered crystals, effects associated with localized
electronic states occur. These effects cannot be described in a model where the crystal is
treated as an ideal one.

Calculations of the electronic structure of an alloy are based on using the self-consistent
method of the Korringa—Kohn—Rostoker-coherent potential approximations are made in
work [22-24]. In [25], a virtual crystal approximation was proposed to study the properties
of alloys by the density functional method. This approach is applied in the Vanderbilt
ultra-soft pseudopotential scheme to predict the properties of Pb(Zrg 5Tip5)O3 alloys in its
paraelectric and ferroelectric phases.

In our work [26], we present a new method of describing the electronic spectrum
and electrical conductivity of disordered crystals based on the Hamiltonian of electrons
and phonons. Electronic states of a system are described by the tight-binding model. Cal-
culations of two-time Green’s functions are based on temperature Green’s functions [26].
This uses a known relation between spectral representation for two-time and temperature
Green’s function [27]. The calculation of the temperature Green’s functions of disordered
crystal based on diagram technics are analogous to the diagram technique for a homoge-
neous system [27]. A system of exact equations is obtained for the spectrum of elementary
excitations in a crystal. This makes it possible to perform numerical calculations of the
energy spectrum and to predict the properties of the system with a predetermined accuracy.

2. Hamiltonian of an Electron-Phonon System for a Disordered Crystal

The Hamiltonian of the disordered system (alloy, disordered semiconductor, and
disordered dielectric) consists of the sum of the Hamiltonian of electrons in the nucleus
field, the Hamiltonian of electron—electron interaction, and the Hamilton of nucleus. The
motion of the ion subsystem is reduced to nucleus oscillations near the equilibrium position
under the influence of the nuclei interaction force, and their indirect interaction through
electrons. In the Wannier representation, the system Hamiltonian is as follows [26]:

H = Hyp + Hint (1)
where zero-order Hamiltonian
Hy = H” + H{]) )

consists of the Hamiltonian of the electrons in the field of the cores of the atom’s ideal
ordered crystal

HO— x5O

niy,n’i’y’ant'yan'i’yl
niy 3)
7’1/ Z‘/,Y/
and the harmonic phonon Hamiltonian for the motion of the cores of the atom’s ideal

ordered crystal
0 P2 0
Hl(Jh) — Z ﬁ + % Z q>£ti2x,n’i/ “,um-“un/i/a/
nic nio (4)
n'i'o!

Symbol 1 denotes the number of a unit cell, i denotes the number of a node in a unit
cell, and y denotes all of the other quantum numbers for the orbital, including spin. The
symbol h® denotes the “hopping integral” that connects the respective orbitals. For the

phonon Hamiltonian, « is a spatial direction (x, y, or z), Py« is the core momentum, M,; is
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the mass of the core, 1, is the deviation of the core from the equilibrium position of the
lattice site, and CDES.?X it 18 the corresponding spring-constant matrix.
The interaction Hamiltonian in Equation (1) is the perturbation of the system due to

all of the effects we will be including. It is composed of six pieces:
Hint = 8P + Hee + Heph + Hee + thc + thph (5)

5® is the modification of the core—core Coulomb interaction due to the disordered
atoms added to the system; it is the difference between the original core—core repulsion
Hamiltonian and the new one. The electronic Hamiltonian is modified by the term

— +
Hee = Z wni%n/i/y/aniyan/i/y/ (6)
niy
1:1~,1

n'i'y

which is the difference between the new hopping Hamiltonian and the original periodic
one. The electron—phonon interaction is given by

_ / +
prh - 2 U niry iy iy ity @)
niy
i)

n'i'y

It is described in more detail below. The Hamiltonian of the Coulomb interaction
between electrons is given by the term

_1 (2Q)mmny 4+ 4
Hee = 2 Y OUngny Ay OnyOngAng,
niy, ny, (8)
ns,ny

n = (niy).

The modification of the interaction of the phonons with the cores caused by the
disordering of the atoms is given by

thc:% )y AM L PrioPrrit o0+

- nioe,n'i’ o
nix
n'i' o
1 AD , )
+§ Z nion'i' o UniocUn'il o' 1
nio
n'i’ o
where
AM ! ! L Ys, 5.0 (10)
. . = _— 10751 !
nioe,n'i’ o’ va Mi nn' i’ ¥ oo

ADyio it = it — Cnggxrn,i,a,, and M,,; and M; are the masses of the atoms at
site (ni) for the disordered and ordered alloy, respectively.
We also include the cubic anharmonic potential terms for the phonons (under the

assumption that they remain small and can be treated perturbatively via

_1 (0)
HPhPh -3 L q)nioc,n’i’od,n” i ot Wi X
nio
n'i'o! (11)
n// i// (X//

XUyt o/ Uyt it ! -
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+
ni
Vane’s function ¢,,;,, (533 = (&|niy), where & = (r, 0’) are the spatial and z-components of
the spin coordinates of the wave function.

To construct the Wannier functions, we use analytical expressions for the wave func-
tions of an electron in the field of atomic nuclei of type A localized at the lattice sites (ni) of

an ideally ordered crystal:

The operators 4, and 4, create and destroy electrons in the state described by

Wis (1 —141) = Reg (|1 — 1] ) Y (x = 1),

Yim (r = 10i) = Y1 (8, 9), (12)

where 6, ¢ are the angular spherical coordinates of the vector r — r,,;.

Here, 6 = €lm is an index that incorporates the quantum numbers for the energy value
€, the angular momentum quantum numbers are [ and m, r is the electron position vector,
and r,,; is the position vector for the atom at site (ni) in equilibrium

Tni = Tn + Pj,
r, =Y lvay, (13)
v

1, is the position vector of the unit cell n of the crystal lattice, and p; is the vector of
the relative position of the node of the sublattice 7 in the unit cell #n. The coordinates I of
the radius vector r,, of the unit cell n of the crystal lattice are integers. The number v takes
on values v = 1,2, 3 for three-dimensional crystals, v = 1, 2 for two-dimensional crystals,
and v = 1 for one-dimensional crystals.

Basis orthogonalization is performed with the Lowdin method [28]

’J’m’é> = S 2 Wiz Spis wirs' = (Wnis|Wyirs)s (14)

where S5 5 are the overlapping matrix.
Vane’s functions ¢, (r, 0’), on which the Hamiltonian of the system are represented
as in Equation (1), are defined from equation:

d)m'y (1‘, OJ) = J)nié (I’ - rni)XU (OJ) (15)

where x(0’) is the spin part of wave function, y = §o.
The orthogonalized wave function can be represented as:

- 1
Vyins, (11,01, 01) = ) Srnyir8amis 5, Reah (72) Yiym, (02, 92). (16)

12,028

In expression (16):

rl =r— ri’llillrz =r— r?‘lziz = rl - rn2i2n1i1/

1
2 2 2\ 2
_ 1_,1 2_ .2 3_,3
= ((x xn212n111) + (x xn212n111> + (x xﬂﬂz"m) ) ’ (17)
x! = 1 sin 07 cos @1, x> = r1 sin O sin @1, x> = 11 cos 1,
o _ @) _ MY, o o
A ;(lv Iy )a$ + Piy, = Piy»
rpcos@ — x5 . .
cos 0y = 22711, (18)
@)

1

[

2ohh, (19)
72(1 — cos? 0;)?2

r18in 071 cos @1 — x
)y = arccos

Summation over 7n,i; in expression (16) means summation over r,,;,, in accordance
with Formula (13).
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The overlap matrix S s/ is found from the equation:

nid,n'i’

Snyiy1,mir8; = - (20)
JIJ Reyay (1) Yy, (01, 01) Rty (r2) Yigmy (02, 02)77 sin 01dr1d01d 0y

where 1y, 07, @, are expressed through r1, 01, ¢1 in accordance with Formulas (17)—(19).

_1
2 )
npip&p,n1iq

ik(t, i, — T i
Siys1,i28 (k) = Z i1 81,m3i25,8 (rrgiy =¥y (21)
1y

To find matrix S
matrix (20):

5 in expression (16), we find the Fourier transform of the

The vector k is defined by the expression

k= Zkvb\//
v

(22)
(avbvl) = 27T6V\,/,
b is the basis vector of the translations of the reciprocal lattice.
Summing over #, on the right-hand side of Formula (21) is easy to do if we replace it
according to (13) and use

3
Kty = tui) = Y Y kb (Z (l(vz) _ l(vl))af,‘ + 0 — Pi"f)- (23)

x=1 v/

As the matrix element S, ;. 5, 1,i,5, decreases with the distance between the nodes n1i,
npip, in numerical calculations, when summing over 7, in expression (21), it is sufficient to
restrict ourselves to a few coordination spheres. In this case, summation over n, is reduced

. 2
to summation over ZE, ).

The matrix Sy, ;, 5,,1,i,5, has an infinite rank. The rank of the matrix S;, 5, ;, 5, (k) is finite,
1
2

_1
which allows for finding the matrix S. ? (k). The matrix S in expression (16)

. . i181,i262 n2ip8p,m1i1 81
is found from equation:
1 1 1 .
2 - — T2 _lk(rn in " Tnqi )
Sniird1,mirsy = Ngsz‘lél,izéz(k)e 2, (24)

The values h(o)

n1i1Y1,M2i2Y2
potential energy Y v (r — 1,,;) of the electron in the field of the cores of the atom’s ideal
ni

(0)

nyi1y1,m22v2

in Equation (3) are the matrix elements of the kinetic and

ordered crystal. The values & are defined by the expression:

(0) _ o g 2% 3 n3iz _
nyiyy,maiays Z E11515”3i353,n1i151 "5"31'353,7121’252661’(rz + 2 ] ity iy’ Y T bo. (25)
n3i383 naizF#nyi
In the Formula (25)
nsis _

niiyymai2ys ) ~
IS Wagiy5, (1,01, 1) 0" (r3)Wyiys, (72, 02, ©2) 77 sin 01dr1d01d @1 X 86y,0, (26)
me4(Zi )2 -
Eilgl = _W/ &1 = 1/2/3/ ey
Here, 17, 05, @7 is expressed through r1, 01, @1 in accordance with Formulas (17)—(19).
The exprc.ession for 3 is. obtained from expression (17) for r2 replacemen’c.x;;‘2 iynyiy OY Xp, iy
Summation over n3i3 in expression (25) means summation over t,,;,, in accordance with
Formula (13).
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In Formula (26) and e are the mass and charge of the electron, respectively, and Z;
is the ordinal number of an atom of the sort A located in the site ni of an ideally ordered
crystal. /i denotes the Planck’s constant.

The matrix element of the electron—ion interaction Hamiltonian in Equation (6) is
given by

_ n// l//
wm-y,n/i/y/ = Z niy iy’ (27)
"1
n''i
where
N // // N
m.y wily! = ch’l// i wmy n’l/Y/’ (28)
An// .l‘// _ }\n// l'// An// .l// 1
wm‘y,n’i’y’ - Uniy,n’i’y’ + Av niy,n'i'y’ ni‘y,n’i"y’ (29)
An i

is a matrix element of the potential of the core of the atom o™ (r — 1, ).
7\Tl3i3
miry1.M2izy2

miry1,12izy2

The expression for v
with v (r3).

In Equation (28), ¢} is a discrete binary random number taking the values of 1 or 0,
depending on whether an atom of type A is at site (1i) or not, respectively. The symbol
Av Q# n’: iy will be defined next.

The expression for the electron—phonon interaction in Equation (7) is found through
derivatives of the potential energy of the electrons in the ion core field due to a displacement

is obtained from Formula (26) by replacing v/ (r3)

of the atom by vector u,;. In Equation (7), the value of v/ niy ity 18 given by
’ o /'rl”l"
Uiy ity = Z Uiy, n’z/y’un” i"our (30)
n// Z// o«
where
/n/l ZN /}\n// //
m.y ily! = chu Y niy, n’l/‘y (31)
. 1" . .
with o/ Z‘””y ;, i‘,’%/, the matrix elements of the following operator:
d
_en//i//‘xm (|I‘—I‘n// //|),
Yl” i,/ (32)
e = I‘—I‘n// i
i [r=t |
; 1An3izx : : A
" The expression for v/, 37 . | is obtained from Formula (26) by replacing in it '3 (r3)
wi
(x‘x — X ) d
33 j
— T = pMBis(py), (33)
r3 d7’3
" . o . . .
AvMT | in Equation (29) describes electron scattering on the static displacement of

nly n'i'y’ . )
the atoms, and is defined by the equation

n ;1 "
Av An''i Zvl?\n 1" us/?/\// (34)

mynzy niy i’y ¥l it &
o

where ui’,),\l.,, « 1s the o projection of the static displacement of the atom of type A in the site,
and n”i" I caused by the difference in the atomic radii of the components of the disordered
crystal.

Upon receipt of expressions (27)—(34), it was taken into account that the potential
energy operator of the electron in the field of the atoms core can be expressed as:0" (r — 1/ ,;;),
Tty = 1y +;; + uy;, with r being the electron’s radius vector, r,; the radius-vector of
atom’s equilibrium position in the site of the crystal lattice (ni), u; the vector of atom’s
static displacement from equilibrium position in site (1), and u,; the atom’s displacement
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operator in site (ni). Expanding 0" (r — t/,;;) in the series in powers u,;, and restricting
ourselves to linear terms, we arrive at expressions (27)—(34).

The matrix of the force constants arising from the direct Coulomb interaction of the
ionic cores has the form:

_ Z,,iZn/,-/ez
4reg |rn+pi7rnl —Py |
X [3(7’71“ + Pia — T — pi’oc)(rnoc/ + Pio — Tl — pi’oc’)_

— |I'n +p; — 1,y — pi/|26““1},ni 7é n'i'.

(I)m'oc,n/i’ o = 5 X

(35)

where Z,; is the serial number of the atom located in the lattice site ni of the disordered
crystal, which is given by the expression

Zni =Y chi Zi. (36)
A

This matrix ®,; /i satisfies the following constraint:

Y Pt = 0. (37)

n'i'

Multicenter integrals U%Zi’nz, n = (niy) in Formula (8) can be represented as

nyiyy1MaiaY2 2 1
Vnyiyyamisys = € Oo10180203 |
i 1

T ! Al I\ "ol "\ T "\ . ! Al /
><11)3"1/1'1 by g,rl’ % ‘Pl)‘bnzizéz (r1,07, 01 ) Wnsisss (12,03, @3 ) Wnyiys, (73,03, @3) (38)
X d°rhd°r, .
1477

In Formula (38)

1
2\ 2
|r/7r//‘ — (Z(xlocxﬂax%iyuﬁ) ) , (39)
X

d>r) = r}?sin 0]dryde do}, (40)

When integrating over r/, 6/, ¢/ in Formula (38), 5, 85, ¢} should be expressed through
", 1 ¢}, in accordance with Formulas (17)—-(19), in which I is necessary to replace x;"z ipnyiy
with x¥; ;. When integrating over 71,67, ¢] in Formula (38), 15,65, ¢, should be ex-
pressed through r’ll , 6’1' , (p'l' , in accordance with Formulas (17)—(19), in which it is necessary
to replace x; , ; withx;t, .
So, Formulas (17)-(19) describe the procedure for calculating the matrix elements

(0) (2)miry1,n2i2y2 . . .
Moy iz Vrrmisyaiginys Hamiltonian (1), containing one-electron and two-electron
integrals.

3. Green’s Functions of Electrons and Phonons

We employ a Green’s function-based formalism to perform the calculations. Ultimately,
we need the real-time retarded GAB(t,t') and advanced G/'B(t,t') Green’s functions are
each defined as follows [26]:

GAB(t,t') = —Lo(t—t') < [A(t), B(t')] >,

GAB(t, ) = L0(F — 1) < [A(t), B()] > . (1)

Here, the operators are expressed in the Heisenberg representation

A(t) — eiH t/ﬁA e—iH t/h’ (42)
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where £ is Planck’s constant, H = H — p.N, L, is the chemical potential of the electronic
subsystem, and N, is the electron number operator given by

Ne = Za:l;vunh/' (43)
niy

In addition, the commutator or anticommutator is defined via
[A,B] = ABF BA, (44)

where the commutator is used for Bose operators (—) and the anticommutator is used for
Fermi operators (+). The symbol 6(t) is Heaviside’s unit step function. The angle brackets
(...) denote the thermal averaging with respect to the density matrix p

< A>=Tr(pA), p= e(Q*H)/®, (45)

where () is the thermodynamic potential of the system given by exp(Q)/®) = Trexp(—H/©)
and © = k;, T, with k; Boltzmann’s constant and T the temperature.
The thermal Green’s functions are defined by

GAB(1,7) = — < T A(1)B(?) >, (46)
where the imaginary-time operator A(7) is derived from the real-time Heisenberg repre-
sentation and the substitution t = —ifit. Hence,

Aty =eTTae T, (47)

In addition, the time-ordering operator satisfies

T A(t)B(7) = 0(t — U)A(T)B(T)+ ,
+0(7 — 1)B(7)A(T) )

where the plus sign is used for Bose operators and the minus sign for Fermi operators.
We next go to the interaction representation by introducing the operator

o(t) = et TeHT (49)

with H = Hy + Hj and Hy = Hyp — p,Ne.
Differentiating the expression for o(t) in Equation (68) with respect to T and then
integrating starting from 0, with the boundary condition ¢(0) = 1, we obtain:

o(t) = Trexp —/Hint(”t’)d”c’ , (50)
0

where Hiy () = e THyy e=Ho T Employing this result yields
A() = 0" H(1)A(T)o(1), (51)

with A(7) in the Heisenberg representation with respect to the noninteracting Hamiltonian.
Substituting these results into the definition of the thermal Green’s function creates the
alternate interaction-representation form for the Green'’s function, given by

| < TeA(1)B(Y)o(1/0) >

AB AN
G (m ) = < 0(1/@) >

(52)
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where all time dependence is with respect to the noninteracting Hamiltonian and the trace
over all states is with respect to the noninteracting states

< A >o9=Tr(pgA), pg = e(Qo—Ho)/® (53)

Next, we expand expression (51) for o(1/0) in a series in powers of the interaction
Hamiltonian H,_,(7) and substitute this expression in Formula (53).

The diagrammatic method is generated by expanding o(T) in a power series in terms
of H,_,(7), and then using Wick’s theorem to evaluate the resulting operator averages.
The numbers of quantum states for different operators in the interaction Hamiltonian
(t) (5)=(11), (51) are different, and the values of the argument T are the same.

Each operator can be assigned a quantum state number and an argument num-
ber 7, if in expression (51) for o(1/6) the operator Hjn(T) is replaced by an operator
Hint(T, 71, . .., ) in which the values of the argument 7 for operators with different quan-
tum states are different, the matrix elements differ from the matrix elements of the operator
Hint(7) by a factor (T — 1) ... d(T — T¢), and the single integral over T is replaced by the
integral over 1,71y, ..., Ty multiplicity k + 1. The multiplicity of the integral is different
for different types of interaction. In expression (53) for GAB(t,7'), the term of the series
for 0(1/0) (51) forms a multiple sum over quantum states and an integral over T of the
mean T-product of operators Hin (T, Ty, . . ., T ) multiplied by an operator A(t)B(t'). The
T-product of operators is averaged over the occupation numbers of the quantum states of
the system of noninteracting electrons and phonons, in accordance with Formula (53). The
numbers of the quantum states for the operators in the indicated T-product are ordered
by the matrix elements of the interaction operators Hin (T, T1, . .., T ), in accordance with
Formulas (5)—(11), in such a way that pairs of operators are formed. This is due to the
fact that among the average T-products of operators, only those in which the number of
operators is even for the electron subsystem and the phonon subsystem are nonzero. The
quantum state for each operator of the pair, except for the operators A(t), B(t'), coincides
with one of the quantum states for the corresponding matrix element of the interaction
operators Hin (T, T1, ..., T¢) in the given product.

Let us give the averaging technique in expression (71) a simpler form. For this, in the
T-product of each pair of operators a,, (1)a,\, (12),n = (niy) for the electron subsystem and
Uy (T1) iy (T2), Py (T1) Py (T2), Uiy (T1) Py (T2), Py (T1) Uy (T2), 1 = (nix) for the phonon
subsystem, in the Hamiltonian of the system of noninteracting electrons and phonons Hy
(2)-(4), (53), we compare the sum of the products of pairs of operators Hy;, »,, the numbers
of quantum states of which coincide with the numbers of quantum states depending on T
the operators of the pair.

Provided that the numbers of quantum states for the operators in the T-product are
ordered by the matrix elements of the interaction operators Hint (T, T4, . . ., T¢) standing in it,
the operators exp (—Hou,n, /0), exp (—Hon,n,T) change places with the products depending
on T other pairs of operators. It follows from this that the average of the T-product of
several operators in expression (53) is equal to the product of the average T-products of
pairs of operators that determine the matrices of the Green’s functions for the zero-order
Hamiltonian Hy. This statement also extends to the case when the quantum states for the
operators of a pair coincide with the quantum states for the operators of other pairs. This
follows from the fact that the distribution function of a system of an infinite number of
particles over the occupation numbers of quantum states has a sharp maximum, and the
most probable value of a physical quantity is equal to its average value. The quantum
state 1; and the argument T; for each operator of the pair, except for the operators A(7),
B(t'), coincides with one of the quantum states 1; and arguments 7; for the corresponding
matrix element of the interaction operators Hint(T, Ty, ..., T¢) in the given product. In
expression (71), the Green’s function G48(t,1’) is summed over quantum states 1; and
integrated over arguments ;.

H.

int
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The averaging technique described above in expression (71) for the Green’s function
GAB8(1,1') is the essence of Wick’s theorem. This technique then generalizes the approach
used for the homogeneous system [27].

The technique for calculating the Green'’s function GA8(t,7') (53) becomes clearer if the
terms on the right-hand side of Equation (53) are represented in the form of diagrams. If the
Green’s function of the system is expressed as a series only over connected diagrams [27],
then the denominator in Formula (53) will cancel out with the same factor in the numerator.
So, the thermal Green'’s function is expanded in terms of connected diagrams. The indicated
diagrammatic series can be easily summed up, which makes it possible to go beyond the
framework of the first approximations of the perturbation theory and obtain equations for
the Green’s functions of the system.

Summing up the indicated series, using the standard relation between the spectral
representations of the temperature and real-time Green’s functions and performing an
analytical continuation on the real axis, we obtain the following equations for the retarded
Green'’s functions [26] (hereinafter the dependence on r is suppressed):

G™' (&) = G§*' () + G§" (e) (w+ Zepu(e) + Zeele) ) 6™ (¢)
G (e) = Gi“() + Gl (&) (AP + Zppe(€) + Zpipn(€) ) %
X G"(e) + G4 (e) AM LGP (¢),
GPP(e) = GIP(e) + GIP () AMTIGPP () + Gl (e) x
X (B® + Zpne(e) + Zpipn(e) ) GF(e), (54)
G“P(e) = GYP (&) + GEP () AM1GPP(e) + Gt (e) x
X (8@ + Zpne(e) + Zpapu(e) ) GP(e),
GP(e) = G (&) + G (&) (A + Zppe(e) + Zppi(e) ) %
xG"(e) + GIP (e) AM~1GPu (),

where ¢ = hw. Here, G* (&), G (¢), GPP(e), G*F(¢), GP(e) are the real-frequency
representation of the single-particle Green’s function of the electrons, the coordinate-
coordinate, momentum-momentum, coordinate-momentum, and momentum-coordinate
Green'’s functions of the phonons, respectively; and X, (), Zpne(€), Zee(€), Zpnpn(€) are
the corresponding self-energies (mass operators) for the electron—phonon, phonon—electron,
electron-electron, and phonon—-phonon interactions.

The real-time and real-frequency Green’s functions are related by standard Fourier
transform relations given by

[e9)

G = 5 [ GA(@) e lde (55)
and .
GAB(w) = / GAB (1) el at. (56)

The thermal Green'’s functions are periodic (bosons) or antiperiodic (fermions) on the
interval —1/® < 1 <1/0, and hence have a Fourier series representation in terms of their
Matsubara frequencies, as follows:

G (1) = @) G*B(wy) e 0T (57)
Wy
and
1 1/0
AP (w,) = 5 [ G e, (58)

-1/0
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where the Matsubara frequencies satisfy
W — 2nm © for Bose particles,
" (2n+1)mt © for Fermi particles, (59)
n=0,£1, £2,...

The electronic Green’s functions are infinite matrices with indices given by the lattice
site n, the basis site i, and the other quantum numbers y. Similarly, the phonon Green’s
functions also are infinite matrices with the same lattice and basis site dependence, plus
a dependence on the spatial coordinate direction «. Using the equations of motion for
Green’s functions, one can obtain simple expressions for the zero-order Green’s functions,

namely [26]:
-1

Ge () =[e—H] , (60)
with a 0
e [ | (61)
-1
Gt (e) = [sz(O) - q><0)} , (62)
with
q)(()) = Hq)(mnioc,n’i’oc’n (63)
and
MO = || M;8,,8;18 o |- (64)

Here, the double lines denote a matrix.
When the perturbations are small, given by

(£2AM + A + Zppe() + pipn(e))
©

nioe,n'i o

nio,n’'i’ !

<<1, (65)

then the solution of the system of equations in Equation (55) becomes

-1
G () = [e = HY = (w+ Zepn(e) + Zee(®)) |, (66)
€2 !
G"(e) = {wZM“)) — o — <ﬁ2AM+ACI>+the(s) +2phph(e)>} . (67)
PP 7572 (0)\2 ~uu
G (e) = 5 (M) G™(e), (68)
where
AM = ||(Ml — Mni)énn’éii’écxoc’nfa = ﬁw (69)

The mass operator of the Green's function of electrons for the electron—phonon inter-
action X, (T, T') is described by the diagram in Figure 1. The mass operator of the Green’s
function of electrons for the electron—phonon interaction X, (t,7') is described by the
diagram in [26,29,30].

Solid lines in Figure 1 correspond to the Green’s function of electrons Gflf; ity (T, T )
and dashed lines correspond to the Green’s function of phonons Gzl?‘om/ 7o (T, 7). The
i 0y

vertex part I' 2% % (T2,7,71) of the mass operator of the Green’s function is described by
the diagrams in Figure 2.
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Vil
ia. /S n o
2 2 4 4
ﬁ}/ N N ﬁf}/ ’
n n
Iyl 37/3
Figure 1. Diagram for Xopp, iy, wity' (T, T') = Zeph iy ity - Here 71 = (nit).
Hy e,
& - /N o+ +...
ny Y, Hy By
. . Tpin & _ hh« = — (i
Figure 2. Diagrams for the vertex part I' 2%, | (t2,7,11) = U5 iy, Heren = (nir).
The not shaded triangle in Figure 2 corresponds to equation
Mol &: 11pip o
FOQn%y,zmiwl (T2, T,71) =0 mz‘yz,n]ziwl‘s(T — 1) 8(T—T11). (70)

In Figures 1 and 2, summation for internal points 7y is carried out. Summation of riy
provides summation of niy and integration over 1. Expressions that correspond to each
diagram are attributed to multiplier (—1)”“3, where 7 is the diagram’s order (namely the
number of vertices I'g in the diagram), and F is the number of lines for the Green’s function
of electrons G* . This function goes out and goes in in the same vertices.

Explicitly, the electron-phonon self-energy becomes

[e) .
o - _ 1 ' ) pOmirey
Z:eph niy,n'i'y’ (5) - 4m’7£0 de COth(Z@) I niy, nzizys X
uu I\ ouu / aat (71)
X [Gﬂlil Oélfnzi;“z( ) G"lil 061,7121'2062(8 )} Gn3i3V3/n4i4Y4 X
1\ M2i2 02

(e =€)l ngigyan'i'y"”
(O?i’l]il Ofl — /'rlllil X1 ) (72)
niy, n3izys niy, n3iz’ys’

where repeated indices are summed over.
Phonon-electron interaction is described by the diagram in Figure 3. Phonon—electron
interaction is described by the diagram in [29,30].

n n
e 373

Figure 3. Diagram for Xy, yioniro (T 7)) = Zppe fioc,ir o+ In Figure 3, 71 = (ni).

The designation in Figure 3 corresponds to designations in Figures 1 and 2.
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The self-energy of the phonon due to the phonon—electron interaction is given by

o .
3 . ) _ 1 f (O)mcx
phe mo‘f”/l,‘", — 2n n2i2V2/”]i1V1
—00
"
X aa aa * / >
{ |:G”111V1/71313V3( )+ n1i1Y1,M303Y3 (5 te ) (73)
aat !/ aa
Gn4i4Y4,”2i2Yz (¢') + Gnlilyl,n3i3y3 (e+e )X
+ +
aa N _ caatx ) /
G”414Y4 MaizYs (') Gn4z4y4,n212y2 (¢ )} } X
n'i'o
n3i3Y3,M4i4Y4"

where f(¢) is the so-called Fermi-Dirac distribution function.

Diagrams for the mass operator Z, (T, 7') that describe the electron—electron inter-
action, are shown in Figure 4. Diagrams for the mass operator X (t,T') that describe
electron—electron interaction, are shown in [26,29,30].

P32 "

'

Hy iy

Figure 4. Diagrams for L, iy, wiry' (T, T) = Zge jiy iy - Here 71 = (nit).

Noln Yo, N1l . . . .
The vertex parts Fm? 3/2?1/’21'/3/1/ 1(1y,117,7') are shown in diagrams in Figure 5.
ﬁ2y ﬁl’/l 27’ nli/l ~2}’
ﬁy%m. sy iy’ ﬁy 'y

: ; "zlzvzlﬂllﬂfl N — 7Y Y1
Figure 5. Diagrams for vertex part 1“my Wity (1o, 11T, ) = Fm/ iy . Here 71 = (nit).

Not shaded triangle in Figure 5 corresponds to equation

12i2Y2,M111Y1 %2)”1%”2121/2 i i o
L iy ity (T2, T, v) = Opiivyonity” X d(t—1)d(t—1)8(t—1"), (74)
~(2)niygiyys _(2)niympiyy, (2)niv,maizys (75)
migy 'y T Tmivy ity n'i'y' nii1yr

The mass operator that describes the electron—electron interaction is:

_v(@ (2)
Lee niy n'i'y’ (E) Zee niy,n'i'y’ + z‘ee niyn'i'y’ (E)’ (76)

(1) _ ( ) npn + +
Zee n,n’ - 27'[1 / dE n n’z 1|:GZ111 112( ) G;}ll]z,nz (El):|/ (77)

28 (&) = () [ des [ dea flen) fleaT "
|Gl o1 - )Gl (e1)—
—Gpa (e —e1 — Ez)GmL(El)} X
|Gl e2) = Gl ()] 78)
— [Gats (e — €1 = €2) — Gi (e — &1 — &2) ]
X |G, (61)GAE L (22)
i (e1)GAL (e2) | e,
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r©Onns _ 2mnny _  (2)nng _(2)nns (79)

nany . = Ongny - = Uy — Unypny 1= NEY
A similar result for the contribution to the phonon self-energy X, (¢) from phonon—
phonon coupling is given in [26].
In deriving the expressions in Equations (72), (74), (78), and (79), we employed the
standard resummation techniques for any function ¢(z) that is analytic in the region
covered by contour C, which encloses all of the Matsubara frequencies. Namely, we have

OY ¢(iwy,) = %fdz coth(55)d(z)
(wnn: 2n7t ©)

(80)

for the Bosonic case, and

©) n) = 5
2 oliwn) Z”f q 81)
(wn—(Zn—i—l) ®)

®\N
\_/
~

for the Fermionic case, with

=z 1
f<®) _exp(%)%—l' (82)
We comment that for the many-body Green’s functions described here, it is customary
to have the chemical potential situated at zero frequency, as dine here.
In general, the renormalization of the vertex of the mass operator of the Green’s
functions in expressions (72), (74), and (79) can be performed using Figures 2 and 5. The
diagrams in Figures 2 and 5 correspond to the equation

pried o pOnie 1 e (O

n3i3Y3,M4iqYy n3i3y3,Naigys 270 n5i5Y5,M6i6Y6

+ + + + (83)
X Gﬂu € Guﬂ’ i ) — G{Za' * X I3 GIZLZ' * . €
[ N6i6Y 6, "717V7( ) ngigyg,N5l5Ys ( ) ”6161/6,”717\/7( ) ngigys,MNs5i5Ys ( )
 (O)noio ot uu 4 (0)T"™1010%10.
n7izy7,ngigys ~ M9lg &x9,M10i10 X10 Nn313Y3,M4147Y4

and -
rrsne 0 nsne 1 f dsf(e)r(o) 15,17
ny, n' ny, ' 27 Ny, ng
+ + + +
X |G, (€)Gati (€)= Gt e (€) Gt (o)

ng,Ng
I iy, = nry.

(84)

Summation is implied over repeated indices in expressions (84) and (85).
The Fermi level er = p, of the system is determined by equation:

<Z>= / f(e) ge(e) de, (85)

1
) = ——F— 86
) = o=y 71 (86)
where < Z > is the average number of electrons per atom and g.(¢) is the many-body
electronic density of states, which satisfies

8e(e) = —— = Im Tr(G*' (&) (87)

Here, (...). denotes configurational averaging over the disorder, N is the number of
primitive lattice cells, and v is the number of atoms per primitive cell. We drop the letter ¢
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on the configurational averaging for simplicity. In Equation (86), (Z) is the average number
of electrons per atom.
It should be noted that the first term in the electron self-energy due to electron-electron

. . (1)
interactions, 2, iry,

, in Equation (77), describes the Coulomb and exchange electron—
electron interactions in the Hartree-Fock approximation. The second term, %2 oe n iy iy o
which is caused by corrections beyond Hartree—Fock, describes the effects of electron
correlations. As opposed to the procedures used in [13-19], the long-range Coulomb
interaction of electrons located at different lattice sites of the crystal is described by taking
into account an arbitrary number of energy bands.

The expression for the Green’s function in Equations (67) and (68) differs from the
corresponding expressions for the Green'’s function of a single-particle Hamiltonian of a
disordered system, only from the different self-energy contributions. Hence, we solve for
the Green’s function using the well-known methods of disordered systems theory [31,32].

To find the density of states by Formula (88), it is necessary to find the average values
of the Green'’s functions defined by Formulas (67) and (68).

4. Localized Magnetic Moments

As we will be working with magnetic moments in the remainder of the paper, we
now slightly modify our notation so that the symbol v = 60 = €lmo now refers to all
other quantum numbers, except for spin, and we introduce the spin quantum number o

explicitly in all of the following equations. The electron—electron self-energy in Equation (67)
n?gn 2 of the different electronic states (ni50), where we are
explicitly including the dependence on o. The explicit values for Z n}i‘?gi are calculated from
Equation (86), where the total electronic density of states ge(¢) is replaced by the partial
Am Al
nido

requires the occupation number Z

density of states g (¢) for energy band b and spin projection o, to allow for magnetic

solutions. The occupation numbers Z n}l.‘g" 2@ and the partial density of states gzig? (¢) then
satisfy
)\m?\l Am 1
nzéc / f gnzé}(\j' E/ (88)

Ay 1 +
gni(e) = = 1m{ Gty iz (€))

Note that disorder averaging is done under the assumption that an atom of type A is

located at the site (ni), and its projection of the localized magnetic moment onto the z-axis
7\711)\1

(89)

(m')eAmM

is equal to m,;. The probability of this configuration is P,;"*', and we have the obvious

constraint that
Yy PY™N = (90)

A WUON

The total charge and magnetization for each orbital on a site are given by

?\m)\l ?\m;\l ?\m;\l ?\m;\l }\"M)\1
Zn16 ané(f + Zmé o’ Miis = Zméo' Zn16 o’ (91)
and by \ .
LN . LONTE .
Ay _ Luis” TS oamy _ Zyis — Mis ©2)
nido 2 7 “nid,—o 2 s

respectively. We need to sum over all other quantum numbers to get the totals:

> Ain;
TN = sz”g“, my; = ;m?\ié- (93)
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5. Density of Electronic and Phononic States

In Equations (67) and (68), by introducing the mass operator as the sum of one site
operators and selecting it as a zero approximation, the effective medium Green’s function
cluster expansion for Green’s functions G*" (&), G*“(¢), is performed. The specified
expansion is a generalization of the cluster expansion for the Green’s function G () of
single-particle Hamiltonian. Green’s functions of the effective environment are defined by
the expressions:

G (e) = [e = 1O = Zyp(e) — Zeele) — 0 (e)] 7 (94)
G () = [th(O) — @0 —F () - Gph(s)] : (95)

Expressions for the operators ieph (¢), iphe(e), and X (¢) are obtained from the ex-
pressions for the mass operators X, (€), Zppe(€), and Ze(e) (72)-(80) by replacing the

Omireg  p(0)mng
niy, naigys’ = "2/ 7

and replacing the Green’s functions Goa™ (¢), G"(¢) with the Green’s functions of the

vertex parts T n = niy by their expressions for ideally ordered crystals,

effective medium G (&), G (¢). Expressions for operators o,(e) and opy(€) in Formulas
(95) and (96) will be given below.

The Green’s functions in Equations (67) and (68) satisfy a Dyson equation that can be
expressed in terms of a T-matrix via:

G(e) = G(e) + G(e) T(e) G(e), (96)

where the T-matrix T is represented by a series, in which each term describes the scattering
of clusters with different numbers of nodes expressed schematically by

T=Y pin Y T(2) miynaia (97)
(miy) (1) #(n2ia)
Here, we have
T mivnsis _ [ sG]~ Gt [ 1 4 G, ©8)

where "1 is the on-site scattering operator, which is given by
t”lil — |:I _ (anil _ O'nlil)é} _1(Zn1i1 _ 0.7111'1). (99)

The self-energy employed in Equation (67), Z"“l (¢), satisfies

W + Tepn(€) + Tee(e) — Zepn(e) — Teele) = Y T (e (100)

(mqi1)
for the electrons. For the phonons, we have

phph (€)=

EAM + AP + e (€) + Zpnp (101)
_ Z nlzl( )
nin

_iphe(s) - i]ﬂh]z:h( )
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Using Equations (72), (77)—~(79), and (101), we obtain the expression for the intrinsic

energy part me ity ,(€), which describes the scattering of electrons:
?\mz\,vm' — oA
enyiry1,n2izy n1i1y1,12i2Y2
+ ¥ NZZ "111Y1 Nn4igYy ( Ampnic - SAmyni )
- n3i3y3,n2i2Y2 n3i3Y3,M4i47Y4 n3i3Y3,M4isYs )’ (102)
n3izys
N4l4yy
where
e}
7\711)\1711' o _l < ulfr >
Z”3i3Y3,n4i4Y4 oo f(e ep) Im G"313V3 n4l4¥4(£) (ni)EAn; de. (103)
—o0
SA . . . . .
The value of Z\""™ in Equation (103) is derived from Equation (104) by replacing

13i3Y3,M4i4Y 4
the full Green’s function by the effective medium Green’s function. The diagonal elements

of the matrix Z;::;‘;me iy, in Equation (104) are equal to the occupation numbers of the
electron states Z ; gn o in Equation (89).
Using Equations (10), (70), (74), and (102), we obtain the expression for the intrinsic
energy part Z;‘Z}JL‘ 217 o (€), Which describes the scattering of phonons:
Anqip e?
thnicx,n’i’oc’ (e) = 2 (Mi; — M\)8uwdiir oot (104)

It should be noted that, in the limit of an infinite crystal, on the right-hand side of
Equations (103) and (105), the terms inversely proportional to the number of lattice sites
are neglected.

We require the fulfillment of the condition

<t0f1> —0, (105)

from which follows the system of coupled equations for the operator, in Formulas (95) and (96):

. . . ~ 4 _ -1
08”<s>=<[1—<28”<e>—08”<s>>cw (e)] 1> ‘<
‘ o (106)
><<[1<22“<e> o0 (¢)) G (&) zel<s>>
iy iy iy Au A
ohn(e) = (1= ()~ NG (] ) x .

(1~ (2(6) - o ()G (@) 2 o))

The matrix elements of the Green’s function of the electron subsystem of the effective
medium can be calculated using Fourier transformation

1

GZ?;: n'i'y! ( ) N; G?{Zt Iy! (k, E) ik (ryi— rn’z/) (108)
~ ~ -1
Gﬂll+ (k/ E) = (E - H(k, E)) , (109)
where N - )
H(k,€) = h'O(K) + Zepn(k, €) + Zee(k, €) + 0e(k, €), (110)

N is the number of primitive unit cells.
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We do a similar procedure for the effective medium phonon Green'’s function, which
satisfies

~ 1 ~ .
Gricnitar (€) = NZ Gioiror (K £)€lk(r”i_rn’i’), (111)
k

_ 2 o = -1

G (k&) = (th )—CD(k,s)) , (112)
where we have

Pk, e) = OV (K) + Zppe(k, €) + Zppn(k, €) + o (e), (113)
MO M6 114
io i’ o 9o+ ( )

Note that wave vector k varies within the first Brillouin zone. Furthermore, we have
that X, (k, ¢) is the Fourier transformation of the matrix Leph niy,n'ity! (¢) given in Equation

(72), for which the terms v’ Z};} 0}213 iyy, aTe replaced by the values for a pure crystal and the
corresponding Green'’s functions are those of the effective medium. The other self-energies
given by X (k, €), Yone(k ), and Zonph (k, ¢) are defined similarly. In Equation (114),
o0 (k) is the Fourier transform of the matrix CID(O)m'(X,n/,v «'» Which describes the atomic
nucleus repulsion. The self-energy iphe(k, ¢) describes the attractive interaction between
the atomic nuclei and the electrons.

The matrix Z;ﬁ;ix Wi ol ,(€) in expression (105) is diagonal. From expression (108), it

follows that the matrix o,y (¢) is also diagonal, and its Fourier transform op;q ir o (€) =
0 pni(€)8;ird o in expression (114) does not depend on the wave vector k. In the diagonal

disorder approximation, the matrix w?ly Wity
n,n'. Neglecting the second term on the right-hand side of Equation (103), we obtain from
Equation (107) that in this approximation the matrix o, (¢) is also diagonal in indices 1, n’,
and its Fourier transform o, ;. (€) in expression (111) does not depend on wave vector k.

The Fourier transform of the mass operator of electron-phonon interaction has the form:

, in expression (103) is diagonal in indices

ieph i‘yi"y’(k/‘c) %N f dﬁlCOth(%)

xZF 0o k,k—kl){G”” (kieg) — G+, (km)} (115)

1y, i3Y3 i10¢1,ip 00 i1001,ip 0

L
XG%“W iy (k=K e —e)T2%2 L (—k + kg, K).

The Fourier transform of the phonon—electron interaction mass operator is:

iphe m'oc,n’i’oc’(k €)= ﬁ% f deq f &1 Zrlz‘yzulxl‘yl( k1,k—|—k1)
+ +
{ |:Glu1£ZY]rl3‘Y3 (k T kl’ et 81) GlﬂlaYl i3Ys3 (k T kl’ e+ El)} (116)

4
XGZ:ZV:QY (kl’ El) + G:Zluyl Z31/3 (k ket 81)

aa an x l(X _
x [GI4Y4 Y2 (kl’ 81) G14Y4 i2Y2 (kl’ 81)} }T i3Y3, 14Y4( —k kl’kl)'
The vertex parts of the mass operators of electron-phonon and phonon—electron
interactions are determined by the equation:
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i’ o (0)i' o/ 1 T
rnilsl‘iéa igYs (kl’ kz) =L i3V3,44Y4 (kl' k2 27 N {o
0)i'
XYy ieye (K1 + ko — ks, ks)
[Glaauve 17Y7( )Glastg/s 15Y5( ki —lo +kse) (117)
+
~ Gy ()Gl s ki — ko + ke
0)ig o
Xl—‘ll7y97 l:VS( k5, _kl k2 + k5)G1L;L:x9 110 X10 (k1 + kz’ O)
&
<l e
In expressions (116)—(118)
(0)ic _
I i]Y1/;$1}/()2¢(k1, k2) - ‘ ‘ (118)
mzﬂllz v nyi1y1,n2i2Y2 exp (lkl (r”’lil - I'm') + iky (rnziz - r”i) ) :

The Fourier transform of the mass operator of the electron—electron interaction can be
represented as:

S 2

Zee iyity' (K €) = de)w iy (k) + de)n/ iy (K e), (119)
5(1) __ 11
Z“ee iy, iy’ (k) — T 2niN
x | der f(en)Z r,$’3 2V (K, Ky k) (120)

~aat _ aat ok
x {Giﬂ/l,izﬁ/z (kl’ 1) Gi1Y1,i2V2 (k1, El)}

S(2
Zie)iy,i’y’ (k’ E) = (Zm) N2 f deq f dey

xflen)f(e2) T T O v, ’m<—k, T )
1,K2

1Y2,11Y1

{ [Gafr (k — k1 ko, e — €1 — Ez)GM * (k1/€1)—

i2Y2/5Y5 Y144
_G?zaﬁjzzisﬁfs (k=T — ke — &1 — EZ)GZa;l,uY4 (k1, El)}
X |Gty iy, (k2 22) = GIf 7 (Ko, ) (121)
- éiuzu;z,zgys (k—k; — ko, e — &1 —¢2)
_gg;iws (k—ki —kp, e — &1 — 82)}
x [G;Zlayl isY4 (kl’ El)GféaVe i3Y3 (k2, 52)

Tx at
N Glulavl i4Vy (kl’ El)GléYs 3Y3 (kz, £2)} }

F Y070 (1 + ks — K, —Ka, ko).

The vertex part of the mass operator of the electron—electron interaction is determined
by the equation:

r 15Y5,16Y6 (k1/ Ky, k3) T (0)15y5,16y6 (k ko, k3)

igyy I'Y igygi'y!
(0) i5ys,i7y
— 2N f def(e Zl" ivvaisve (k1 ko, Ky)
aa*t aatx L. (122)
8 LGZW’@W (ky € )Glsys 110Y10( ki — ko —ky )
_Glt'.z;g/;@w (kg € )Gl;vs 110V10( ki —ko —ky €)]

[ loYoleYe , (kl + ko + kg, —ky, kg)

i10v10d'y
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In expression (123)
(0)i2vo,i3v3 _
I Y1ty (ki, ko, k) =
~(2) miry1n2i2ys2 . ) )
n %n:’) U}’l3i3‘}/3,1’11‘}/ eXp (lkl (rnlll - rnl) ) (123)

X exp (ika (i, — Tni) + K3 (Tyiy — i) )

Cluster decomposition for the Green’s function of electrons and phonons of disordered
crystal can be obtained from Equations (95)-(100). The density of the electron and phonon
states are presented as infinite series. Here, processes of scattering on clusters with different
numbers of atoms are described by each term. It is shown that the contribution of the
scattering processes of electrons and phonons in clusters decreases with increasing the
number of atoms in the cluster by a small parameter

pe)=— ¥ (Me)C(e)rn(e)G(e)) (124)

(naia) A(myiy) iy ooty
where r is the total number of energy bands included in the calculation.

We have shown previously [26,30-32] that this parameter remains small when many
parameters of the system are changed, except possibly for narrow energy intervals near the
band edges.

By neglecting the contribution of processes of electron scattering in clusters consisting
of three or more atoms that are small by the above parameter in Equation (125) for the
density of electronic states, we obtain:

1 Mity; Aty
gele) =15 2 P 8uigole) (125)
1,0,0,A,1m);
i ~ ~ .~ NN N
gé\ifgxczy(g) = _% Im {G—FGt)‘m?\iO’G + v 1;]1%]1 iy
(Ij) # (0i)
N, O (126)
« é [t}"mx/jlj + T(Z)?\m)\l. Oi,?\'m)\/]-lj} é }01'60‘,01'50"
T@AmA 0N myrli _ [ Ay Oiétk’m)\/jljé] -1

(127)

x (A 0i G vl {I + Gthmi Ol}

where G = G%" (¢).
Similarly averaging of the phonon Green’s function G**(¢) yields the phononic density
of states:

1
gpn(e) = = ) Poigdia (¢), (128)
1,00,
i (6) = —%2§MiIm{(§+étMié+ PN

)y
’ ,
(1) f/ (07) 129)

e {t)\’lj 4+ T@A 01’,)\’1]‘] e }Oi“")i“’
where G = G"*(¢).
A mwj/?\ m

In Equation (127), P j0i
at site (Ij) for the atom with magnetic moment 1,/;, provided that the sites in the unit cell

™ is the conditional probability to find an atom of type A\’

at the origin (07) have an atom of type A with a magnetic moment m1,;. Here, tﬁim“ is the



Materials 2022, 15, 739

21 of 29

value of the matrix element of a single-center operator for scattering in the case where an
atom of type A is located at site (n7) and has a magnetic moment 11,,;.

When the system is disordered, we need to consider a random arrangement of the
disordered atomic sites. Hence, in Equation (129), the probability of an atom of type A to be
at site (0i) is given by

Py =<y >, (130)

where ¢/ is a discrete binary random number taking the values of 1 or 0, depending on

whether an atom of type A is at site (i) or not, respectively (36). The joint probabilities in
Equations (126), (127), (129), and (130) are defined by the following:

A

A pA /A
Pl] 0 P Pl] 0i =< Clj Coi >,
/
Amni _ pa piiai p™ TG/ o\ g/
Foim™ = Foi Poi ™ Py =Pioi Prioi (131)
NG g oA A .
Plei Po, P1] 0i =< ¢y COt > .

o g Ho
The probabilities are determined by the interatomic pair correlations 51? gl, € l])\ 0i l

via [30]:

A/A l i
Lt 0= P ]0 (5>\ 5 — Oxa)(BrB — Oaa),
/ N Nj Mo
M/ g €] G , 132
Py =P+ (5%/.,“].— (132)

_ ) -
6m;\/jluj+) ( LONT S 6m7\irui+

where § is the Kronecker delta function. Note that the interatomic pair correlations also
satisfy

BB B _ By(.B Horj M LS NP TVl Thy
e 00 =< (cjj —¢f ) (e — B>, e l])\Oz =< (clj” —¢ e — e N) > (133)

The notations Py and P ™ indicate the probabilities of the static fluctuations of
the magnetization.

As an example, when we have a binary alloy, consisting of two sublattices, and two
types of atoms A and B, we obtain

l] Oz

V2
Poi =2a— Mg (134)
for the first sublattice and v
Pgt = xa+ g (135)
for the second sublattice, with
PE=1-pg. (136)

Here, v = vq + v, is the total number of sublattice sites, x4, and xg =1 — x4 are the
concentrations of the atomic components A and B in the alloy, and 1, is the parameter that
measures the long-range atomic order.

The two values m,; = u; and p;; represent the projections of the localized magnetic
moment onto the z axis. The probability P;'* is connected with the long-range magnetic
parameter 1, via the expressions

V2

v
POi = xu; — 7nm (137)

for sublattice 1 and

+ V1
POPZL“ =Xy < N (138)
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for sublattice 2, with
PN =1 PN 139
o = L= ot (139)
Here, xpx and xu{ =1- xu;\r are equal to the relative number of lattice sites with
localized magnetic moment projections ., and p;, respectively.
For an ideally ordered crystal, the Green’s function in Equation (97) is:
G(e) = limG(e), o(e) — 0, (140)

where the Green’s function G(¢) is given by Formulas (95) and (96). The energies of the
electrons and phonons of the crystal are determined from the equations for the poles of the
Green’s functions:

det||£6ii/6 k)| =0, (141)

1y1y (
dEtH M iiind ot — Nzocz o/ (k 5)” =0, (142)

where Hw iy (K, g), @ io i’ (K, €) are given by Formulas (111) and (114).

6. Free Energy

The Gibbs free energy or, in other words, the thermodynamic potential of the system,
satisfies [27]:
Q= -0 In Tr(e 1/9). (143)

The Hamiltonian H is defined in Equation (1). To perform the trace, we need to sum over
all of the band states, but we also need to take into account the disorder averaging. The latter
is commonly handled via a configurational average [26]. Using Formulas (50) and (144), we
represent the thermodynamic potential in the form:

0= (50)-05 +0 +0ff) + o, (144)

where ng), Qﬁ) are the thermodynamic potentials for the electrons and the phonons in the

field of the ionic cores, respectively. ()’ is the component of the thermodynamic potential
that is caused by the mutual scattering of electrons and phonons; it is defined by

Q' = -0 In(< 0(1/0) >¢), (145)

with o given in Equation (50) for the interaction picture.

In addition, S; = — < InP. > is the configurational entropy, where P. denotes the
distribution function for atoms with a specific z-component of the magnetic moment on
a given lattice site. The angular brackets (...) denote the configurational averaging over
different disorder configurations for a given density of disorder.

Next, we use the “integration over the coupling constant” method to simplify the
results further. By replacing the interacting Hamiltonian Hjy (defined in Equation (5))
by Hiut(A) = AHjyy, differentiating the expression for the piece of the thermodynamic po-
tential () () in Equation (146) with respect to A and then integrating (with the boundary
conditions ()/(0) = 0, O/ (1) = Q)), we obtain the following after a long derivation:

QO = Imf 2L f delf

nvN
><Tr<( () +zg,,h(e,>\) +zee(s,>\))cﬂﬂ*(e,>\)>+ , (146)
+Jcoth(55) Tr{AM~1(A)GPP (¢, \)+
(mm + Zppn(6,1)) G (e, M) )]
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The contribution to the thermodynamic potential from the electrons (in the field of the
ionic cores) is also simple to find. It is given by

ol = —@/ In(1+4:79)/@) o0 (¢) de. (147)

Similarly, the contribution to the thermodynamic potential from the phonons (in the
field of the ionic cores) is given by

[e)

) =0 [ In(1-e /) gl (e) de. (148)

—00

The values ggo) (e) and g;%)(e) in Equations (148) and (149) are given by Formulas

(126)—(130), in which one should put: t""i0% = A0 — 0, G (&) = Go(e) (61)-(65).
Finally, the configurational entropy can be represented as [26]:

)\mMNm)\/j
NN M 1 7\7”9\1'7\/”17\/‘ nilj
Se=—| X Py NWmPN+S ) Py, e (149)
Ay hi }\,m)\i,ni Pni NPI]' /
7\/,. ﬂ’l)\/j, l]
I (ni) # (1) .

Ultimately, we are interested in determining the Helmholz free energy, F, as a function
of the volume V the temperature T, the number of electrons N,, and the parameters of
interatomic and magnetic correlations (&, ;,u,i,, /7). The Helmholz free energy can be found
directly from the thermodynamic potential. Namely, it satisfies F = Q) + p, < N, >. The
free energy per atom, can be approximated by [26]:

F = (60) — ©S. + Qp+ Qpy + ie < Z >, (150)
where Q) and )y, are given by Equations (148) and (149), but with gﬁ") (e), g;%) (¢) replaced
by ge(¢), gpn(€) (see Equations (126)—(130)).The values of the parameters of the interatomic

and magnetic correlations (€, ,,i,,7) are found from the condition for the minimum free
energy F (151).

7. Electrical Conductivity

Assuming the system to be driven not too far from equilibrium, we are allowed
then to make use of the linear response formalism of Kubo for the electrical conductivity

tensor [33],
1

~

®

O'oqg,

O\

/ e (T (0)Joe(t + ife) ) da. (151)
0

In this equation, [ is the current operator along the o spatial direction. The real part
of the conductivity, called the optical conductivity, can then be represented in terms of the
imaginary part of the retarded response function, or equivalently as

= [ (@) - Gl (@), (152)

Reoqp(w) o
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in terms of the retarded and advanced response functions. The current operator is just the
number operator for the electrons, multiplied by their velocity and the electric charge, and
then summed over all states. It is compactly represented via

Ju(t) = / FH(E, Do (&, DdE, (153)

where Y1 (&,t) and ¥ (&,t) are the field operators for the creation and annihilation of
electrons, respectively, v is the operator of the  component of the band velocity, and e is
the electron charge. The integration over & sums over all states.

To get the retarded response function on the real frequency axis, we must analytically
continue the thermal response functions. The thermal current—current response function is
defined to be

2

e
Glolp(r,7) = — Y Vangny0pnsmy G” (T, na, nat’, ny), (154)
NVl nynanzny

where V; is the volume of the primitive unit cell, and the two-particle thermal Green’s
function is given by the following time-ordered expectation value:

G" (m, npt, n3t, nyt) = <TTan1 (), (T)ay, (T)ay, (T)O‘(é)> <cr(é)>_l, (n = niy). (155)

The two-particle Green’s function from Equation (156) is described by the diagram in
Figure 6.

|
l
4

Figure 6. Diagrams for the two-particle Green’s function.

The numbers of Figure 6 correspond to point numbers, e.g., 1 corresponds to (n1i1y177).

Using the diagram technique for two-particle temperature Green’s function and ne-
glecting the contributions of scattering processes on clusters of three or more sites for the
conductivity tensor, we can get:
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s,8'=+,— v,i
+ X PY"™K(er® 4 ¢, 0p, 60%) (M0 (15)K (1%, v €17 + €)M (g5 )

)\,111)\1‘

Reoyp(w) = 4nvla{fd£1Lf (e1+¢)—f(e1)] ¥ (2655/—1)2{[0512(8?,0“,6%/—!—5)}

R )\’m /./7\m i ~ 7 ~ /

+ TR T R [[K(sls +e,08,615)0aGler® +¢)]

A 1j # 0i,

)\/,7’1’17\/]-

« T(Z))\M)\ioi,)\/m)\/jlj(sls’ + 5)

~ s s/ ~ s (2))\ mMOi,A’mA/-lj s
+HK(er®, va, €17 + €)op Gler”)]T (er®) (156)
—HZ(als/ +¢,0p8,€1°) {(t}‘ m"’fl]( S)K(els,v(x, e’ + a)t}‘mAfOi(als/ +e)
(P er?) £ 200 (7)) Reer® v e2” + )T MO ey )
+T( A Mrj 13, 7\m7\101( )K(s Ve, €1° + E)t)\m)‘IOl(El 4 8)
+T(2))\ Myt 15, ?\m;\,01< ) ( ) S Ve, 81 + £)T( YAm;0i, A My 11(815/ n 8)

+ T(Z)}\ m)\/]-lj,?\m;\iOz(ElS)K(Els,vm 515 + E)T(Z)?\ m)\/]-lj,?\m;\iOi(Els/ 4 £)H }

+%T fdild82f(€1)f(82)AG£f,3(€1,52;6)},

—00 —00

0iy,Oiy

where
K(sfi,va, e + s) =G (&3)vaG™" (sﬁl + s),
éau"’( +) _éaf( 1), (157)
C~;““+(£f) G (1) = (G‘”’ ) (e1),
And the two-particle interaction term denoted by AG!! (g1, ¢2), is given by the equa-
tion:
DG (e1,2:8) = sk 0unnyVpnyn, { |Gl (e1) — Gy (e1)] %
X |Gty (e2) — Gl (e2)] [ézz;4<sz — &) Gt (61 +€)—
Gl (&2 e)Gangn3<s1+e>} Gty (21— €) [ Gl (2) — Gl (62)]
X G, (2 >[Gz::8n3< 1) = Gl (e1)
X |Gl (22) — Gl (2)] G, (62 — ) [ Gl (e1) — Gl ()] +
[Gz:;mﬁ(el—e>63z2n5<ez+s> Gt g (61— >Gzzzn5<ez+e> x
x [ Gt (e2) — Gl (e >] |Gty (1) — Gl (e >}+
[sz;6< 1) = Gl (e1)| Gt (e + ) [ Gl (e2) — Gl (e2)]
X Gl (61 +€) — [szjn6< 1) = Gt g (e1)] Gl (e2 4+ €)%
X |Gl (2) — Ganr, (e2) | Gl (61 +) [T, (n = miy)

~aat
- G?Tl11’16 (81 - 8) X

(158)

Summation over repeated indices in expression (159) is implied.
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For the static conductivity tensor, we can get (w—0):

ss’:+,f v,i
+ ¥ P}\mN (51 106/51 )(t)\m}‘iOi<Els)E(Els,U“, E15’>t?\m7\i0i(sls’)

A SN

Oy 4nV { Ik d£1 Y (2555/—1)2{[03K(€i,00¢,£§,)]

A i ?\’m /‘/)\H’I)\i ~ / ~ /

+ L R™ L Py {[K(Elsfvﬁfﬁls)vac(ﬂls)]

A lj # 0i,

}\/,m)\/]‘

XT(Z))\mMOi,NmA/-lj( /)

=g 2)A m; 08, My Aj
+[K(e1%, v, 1° )UﬁG(ﬁl )T (e1%)

= / )\ i
+K(81S,UB,€1S) [( N ](515) (51 , Vs €1° )tAmAZOI( )
(PO )4 £ ) R e, o e T PO
—I—T( N UNT l],?\m)\,Oz(
+T

; I " 0y, Oiy
n T(2)7\ s iLj AmiOf (€1S)K(€1S/ Vs €1° )T(z))\ m)‘lflj'}\mm()l(sls,)” } }

(159)

7
K(s Vs €1° )t}‘mNO‘(sls)
(

)
(2)N i, ?\m;\,()z( ) (Z)Am;\iOi,)\’mA/jlj(qs/)

K €1 rvcxr51 )T

The electron velocity satisfies the conventional definition

19H (k)

Valk) = 75—

(160)
When deriving expression (160), the last small term in the expression for electrical
conductivity (157) is neglected.
The method developed in this work was applied in [28] to study the effect of an
impurity on the energy spectrum and electrical conductivity of carbon nanotubes.

8. Energy Spectrum of Graphene with Adsorbed Potassium Atoms

To calculate the electron spectrum of graphene with adsorbed potassium atoms, we
chose the wave functions of the 2s and 2p states of neutral noninteracting carbon atoms as
the basis. In the calculation of the matrix elements of the Hamiltonian, we took three first
coordination spheres. The energy spectrum of graphene was calculated for the temperature
T = 0 K. In calculations, we neglect the renormalization of vertices of the mass operator
of the electron—electron interaction. The dependence of the energy of an electron on the
wave vector for graphene is calculated from the equation for Green’s function poles for the
electron subsystem, defined in Equation (142).

In Figure 7a, we show the dependence of the electron energy ¢ in graphene with
adsorbed potassium atoms on the wave vector k. Vector k is directed from the Brillouin
zone center (point I') to the Dirac point (point K).

In Figure 7, the structural periodic distance from a potassium atom to a carbon atom is
0.28 nm. It is seen from Figure 7 that, at the ordered arrangement of potassium atoms, a
gap in the energy spectrum of graphene arises. Its value depends on the concentration of
adsorbed potassium atoms, their location in the unit cell, and the distance to carbon atoms.
We established that, at the potassium concentration such that the unit cell includes two
carbon atoms and one potassium atom, the latter being placed on the graphene surface
above a carbon atom at a distance of 0.286 nm, the energy gap is ~0.25 eV (see Figure 7b).
A more complex dependence of the electron energy on the wave vector in the region of
the energy gap in comparison with that previously investigated in [34-36] in a simple
two-band model is due to the effect of band hybridization. The location of the Fermi
level in the energy spectrum depends on the potassium concentration and is in the energy
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interval —0.36 Ry < er < Ry0.36. Such a situation is realized if graphene is placed on a
potassium support.

a)

1M

. —  — @

0,00 ~

-0,05 +

-0,10 +

g, Ry
0.02 Ry

0154 - NS S .\

-0,20

0,2

Figure 7. Electronic spectrum of graphene with impurities. The dependence of the energy ¢ on
the wave vector k in the region of the slit is shown in (a). (b) gap in the energy spectrum of
graphene arises.

9. Conclusions

A novel approach to the description of the electronic spectrum, the thermodynamic
potential, and the electrical conductivity of disordered crystals, based on the Hamiltonian
of electrons and phonons, constitutes the main issue of the present work. Expressions for
Green’s functions, thermodynamic potential, and electrical conductivity are derived using
the diagram method. Equations are obtained for the vertex parts of the mass operators of
electron-electron and electron—phonon interactions. A system of exact equations is obtained
for the spectrum of elementary excitations in a crystal. This makes it possible to perform
numerical calculations of the energy spectrum and the properties of the system with a
predetermined accuracy. In contrast to other approaches, in which electron correlations
are taken into account only in the limiting cases of an infinitely large and infinitesimal
electron density, in this method, electron correlations are described in the general case of
an arbitrary density.
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It was found that a gap appears in the energy spectrum of graphene with an ordered
arrangement of potassium atoms. Its value depends on the concentration of adsorbed
potassium atoms, their location in the unit cell, and the distance to carbon atoms. It
was found that at such a concentration of potassium, the unit cell includes two carbon
atoms and one potassium atom, the latter being located on the graphene surface above the
carbon atom at a distance of 0.286 nm, and the band gap is ~0.25 eV. Such a situation is
realized if graphene is placed on a potassium support. A more complex dependence of the
electron energy on the wave vector in the region of the energy gap in comparison with that
previously investigated in [34-36] in a simple two-band model is due to the effect of band
hybridization.
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