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Abstract: This paper presents a new method of describing the electronic spectrum and electrical
conductivity of disordered crystals based on the Hamiltonian of electrons and phonons. Electronic
states of a system are described by the tight-binding model. Expressions for Green’s functions and
electrical conductivity are derived using the diagram method. Equations are obtained for the vertex
parts of the mass operators of the electron–electron and electron–phonon interactions. A system of
exact equations is obtained for the spectrum of elementary excitations in a crystal. This makes it
possible to perform numerical calculations of the energy spectrum and to predict the properties of the
system with a predetermined accuracy. In contrast to other approaches, in which electron correlations
are taken into account only in the limiting cases of an infinitely large and infinitesimal electron
density, in this method, electron correlations are described in the general case of an arbitrary density.
The cluster expansion is obtained for the density of states and electrical conductivity of disordered
systems. We show that the contribution of the electron scattering processes to clusters is decreasing,
along with increasing the number of sites in the cluster, which depends on a small parameter.

Keywords: electronic spectrum; electrical conductivity; disordered crystals; the Hamiltonian of
electrons and phonons; Green’s functions; the temperature Green’s functions; diagram technics; the
mass operator of the Green’s function; density of states; free energy

1. Introduction

Advances in the description of disordered systems are mainly due to the development
of the pseudopotential method [1]. However, due to the nonlocal nature of the pseudopo-
tential, there is a problem of portability of the pseudopotential. It is impossible to use
nuclear potentials, determined by the properties of some systems, in order to describe other
systems. The use of the theory of Vanderbilt ultra-soft potentials [2,3] and the method of
projector-augmented waves proposed by Blochl [4,5], allowed for achieving fundamental
progress in investigating the electronic structure and the properties of the system. In the
augmented-wave projector method, the wave function of the valence states of an electron
(all-electron orbital) is expressed in terms of a pseudo-wave function. The pseudo wave
function is expanded in a series of pseudo partial wave functions. The wave function is
expanded in a series of partial wave functions with the same coefficients as in the expression
for the pseudo wave function. Partial wave functions are described by the Schrödinger
equation for non-interacting atoms. The expression for the pseudo Hamiltonian, as an equa-
tion for the pseudo wave function, is derived by minimizing the full energy functional. This
approach was further developed through the use of the generalized gradient approximation
proposed in [6–10]. The paper [10] describes the application of this method for calculating
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the electronic structure of crystals and molecules using the VASP and GAUSSIAN software
packages, respectively.

It should be noted that in [11–19], the crystals electronic structure was carried out,
including the Coulomb long-range interaction between electrons of different sites on
the crystal lattice, thanks to a method based on the tight-binding model [20,21] and the
functional density theory. However, such methods are suitable only for describing crystals
characterized by ideal ordering. In disordered crystals, effects associated with localized
electronic states occur. These effects cannot be described in a model where the crystal is
treated as an ideal one.

Calculations of the electronic structure of an alloy are based on using the self-consistent
method of the Korringa–Kohn–Rostoker-coherent potential approximations are made in
work [22–24]. In [25], a virtual crystal approximation was proposed to study the properties
of alloys by the density functional method. This approach is applied in the Vanderbilt
ultra-soft pseudopotential scheme to predict the properties of Pb(Zr0.5Ti0.5)O3 alloys in its
paraelectric and ferroelectric phases.

In our work [26], we present a new method of describing the electronic spectrum
and electrical conductivity of disordered crystals based on the Hamiltonian of electrons
and phonons. Electronic states of a system are described by the tight-binding model. Cal-
culations of two-time Green’s functions are based on temperature Green’s functions [26].
This uses a known relation between spectral representation for two-time and temperature
Green’s function [27]. The calculation of the temperature Green’s functions of disordered
crystal based on diagram technics are analogous to the diagram technique for a homoge-
neous system [27]. A system of exact equations is obtained for the spectrum of elementary
excitations in a crystal. This makes it possible to perform numerical calculations of the
energy spectrum and to predict the properties of the system with a predetermined accuracy.

2. Hamiltonian of an Electron–Phonon System for a Disordered Crystal

The Hamiltonian of the disordered system (alloy, disordered semiconductor, and
disordered dielectric) consists of the sum of the Hamiltonian of electrons in the nucleus
field, the Hamiltonian of electron–electron interaction, and the Hamilton of nucleus. The
motion of the ion subsystem is reduced to nucleus oscillations near the equilibrium position
under the influence of the nuclei interaction force, and their indirect interaction through
electrons. In the Wannier representation, the system Hamiltonian is as follows [26]:

H = H0 + Hint (1)

where zero-order Hamiltonian
H0 = H(0)

e + H(0)
ph (2)

consists of the Hamiltonian of the electrons in the field of the cores of the atom’s ideal
ordered crystal

H(0)
e = ∑

niγ
n′i′γ′

h(0)niγ,n′i′γ′ a
+
niγan′i′γ′

(3)

and the harmonic phonon Hamiltonian for the motion of the cores of the atom’s ideal
ordered crystal

H(0)
ph = ∑

niα

P2
niα

2Mi
+ 1

2 ∑
niα

n′i′α′

Φ(0)
niα,n′i′α′uniαun′i′α′

(4)

Symbol n denotes the number of a unit cell, i denotes the number of a node in a unit
cell, and γ denotes all of the other quantum numbers for the orbital, including spin. The
symbol h(0) denotes the “hopping integral” that connects the respective orbitals. For the
phonon Hamiltonian, α is a spatial direction (x, y, or z), Pniα is the core momentum, Mi is
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the mass of the core, uniα is the deviation of the core from the equilibrium position of the
lattice site, and Φ(0)

niα,n′i′α′ is the corresponding spring-constant matrix.
The interaction Hamiltonian in Equation (1) is the perturbation of the system due to

all of the effects we will be including. It is composed of six pieces:

Hint = δΦ + Hec + Heph + Hee + Hphc + Hphph (5)

δΦ is the modification of the core–core Coulomb interaction due to the disordered
atoms added to the system; it is the difference between the original core–core repulsion
Hamiltonian and the new one. The electronic Hamiltonian is modified by the term

Hec = ∑
niγ

n′i′γ′

wniγ,n′i′γ′ a
+
niγan′i′γ′ (6)

which is the difference between the new hopping Hamiltonian and the original periodic
one. The electron–phonon interaction is given by

Heph = ∑
niγ

n′i′γ′

v′niγ,n′i′γ′ a
+
niγan′i′γ′ (7)

It is described in more detail below. The Hamiltonian of the Coulomb interaction
between electrons is given by the term

Hee =
1
2 ∑

n1, n2,
n3, n4

v(2)n1,n2
n3,n4 a+n1

a+n2
an3 an4 ,

n = (niγ).

(8)

The modification of the interaction of the phonons with the cores caused by the
disordering of the atoms is given by

Hphc =
1
2 ∑

niα
n′i′α′

∆M−1
niα,n′i′α′PniαPn′i′α′+

+ 1
2 ∑

niα
n′i′α′

∆Φniα,n′i′α′uniαun′i′α′ ,
(9)

where

∆M−1
niα,n′i′α′ =

(
1

Mni′
− 1

Mi

)
δnn′δii′δαα′ (10)

∆Φniα,n′i′α′ = Φniα,n′i′α′ −Φ(0)
niα,n′i′α′ , and Mni and Mi are the masses of the atoms at

site (ni) for the disordered and ordered alloy, respectively.
We also include the cubic anharmonic potential terms for the phonons (under the

assumption that they remain small and can be treated perturbatively via

Hphph = 1
3! ∑

niα
n′i′α′

n′′ i′′α′′

Φ(0)
niα,n′i′α′ ,n′′ i′′α′′ uniα×

×un′i′α′un′′ i′′α′′ .

(11)
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The operators a+niγ and aniγ create and destroy electrons in the state described by
Vane’s function φniγ(ξ) = 〈ξ|niγ〉, where ξ = (r,σ′) are the spatial and z-components of
the spin coordinates of the wave function.

To construct the Wannier functions, we use analytical expressions for the wave func-
tions of an electron in the field of atomic nuclei of type λ localized at the lattice sites (ni) of
an ideally ordered crystal:

ψniδ(r− rni) = Rε̃l(|r− rni|)Ylm( ˆr− rni),
Ylm( ˆr− rni) = Ylm(θ,ϕ),

(12)

where θ,ϕ are the angular spherical coordinates of the vector r− rni.
Here, δ = ε̃lm is an index that incorporates the quantum numbers for the energy value

ε̃, the angular momentum quantum numbers are l and m, r is the electron position vector,
and rni is the position vector for the atom at site (ni) in equilibrium

rni = rn + ρi,
rn = ∑

ν
lνaν, (13)

rn is the position vector of the unit cell n of the crystal lattice, and ρi is the vector of
the relative position of the node of the sublattice i in the unit cell n. The coordinates lν of
the radius vector rn of the unit cell n of the crystal lattice are integers. The number ν takes
on values ν = 1, 2, 3 for three-dimensional crystals, ν = 1, 2 for two-dimensional crystals,
and ν = 1 for one-dimensional crystals.

Basis orthogonalization is performed with the Lowdin method [28]∣∣∣ψ̃niδ

〉
= S−1/2|ψniδ〉,Sniδ,n′i′δ′ = 〈ψniδ|ψn′i′δ′〉, (14)

where Sniδ,n′i′δ′ are the overlapping matrix.
Vane’s functions φniγ(r,σ′), on which the Hamiltonian of the system are represented

as in Equation (1), are defined from equation:

φniγ
(
r,σ′

)
= ψ̃niδ(r− rni)χσ

(
σ′
)

(15)

where χσ(σ′) is the spin part of wave function, γ = δσ.
The orthogonalized wave function can be represented as:

ψ̃n1i1δ1
(r1, θ1,ϕ1) = ∑

n2,i2δ2

S−
1
2

n2i2δ2,n1i1δ1
Rε̃2l2(r2)Yl2m2(θ2,ϕ2). (16)

In expression (16):

r1 = r− rn1i1 , r2 = r− rn2i2 = r1 − rn2i2n1i1 ,

r2 =

((
x1 − x1

n2i2n1i1

)2
+
(

x2 − x2
n2i2n1i1

)2
+
(

x3 − x3
n2i2n1i1

)2
) 1

2
,

x1 = r1 sin θ1 cosϕ1, x2 = r1 sin θ1 sinϕ1, x3 = r1 cos θ1,
xαn2i2n1i1

= ∑
ν

(
l(2)ν − l(1)ν

)
aαν + ραi2 − ρ

α
i1

,

(17)

cos θ2 =
r1 cos θ1 − x3

n2i2n1i1
r2

, (18)

ϕ2 = arccos
r1 sin θ1 cosϕ1 − x1

n2i2n1i1

r2(1− cos2 θ2)
1
2

. (19)

Summation over n2i2 in expression (16) means summation over rn2i2 , in accordance
with Formula (13).
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The overlap matrix Sniδ,n′i′δ′ is found from the equation:

Sn1i1δ1,n2i2δ2 =t
Rε̃1l1(r1)Y∗l1m1

(θ1,ϕ1)Rε̃2l2(r2)Yl2m2(θ2,ϕ2)r2
1 sin θ1dr1dθ1dϕ1

(20)

where r2, θ2,ϕ2 are expressed through r1, θ1,ϕ1 in accordance with Formulas (17)–(19).

To find matrix S−
1
2

n2i2δ2,n1i1δ1
in expression (16), we find the Fourier transform of the

matrix (20):
Si1δ1,i2δ2(k) = ∑

n2

Sn1i1δ1,n2i2δ2 eik(rn2 i2−rn1 i1
). (21)

The vector k is defined by the expression

k = ∑
ν

kνbν,

(aνbν′) = 2πδνν′ ,
(22)

bν is the basis vector of the translations of the reciprocal lattice.
Summing over n2 on the right-hand side of Formula (21) is easy to do if we replace it

according to (13) and use

k
(
rn2i2 − rn1i1

)
=

3

∑
α=1

∑
ν′

kν′b
α
ν′

(
∑
ν

(
l(2)ν − l(1)ν

)
aαν + ραi2 − ρ

α
i1

)
. (23)

As the matrix element Sn1i1δ1,n2i2δ2 decreases with the distance between the nodes n1i1,
n2i2, in numerical calculations, when summing over n2 in expression (21), it is sufficient to
restrict ourselves to a few coordination spheres. In this case, summation over n2 is reduced
to summation over l(2)ν .

The matrix Sn1i1δ1,n2i2δ2 has an infinite rank. The rank of the matrix Si1δ1,i2δ2(k) is finite,

which allows for finding the matrix S−
1
2

i1δ1,i2δ2
(k). The matrix S−

1
2

n2i2δ2,n1i1δ1
in expression (16)

is found from equation:

S−
1
2

n1i1δ1,n2i2δ2
=

1
N ∑

k
S−

1
2

i1δ1,i2δ2
(k)e−ik(rn2 i2−rn1 i1

). (24)

The values h(0)n1i1γ1,n2i2γ2
in Equation (3) are the matrix elements of the kinetic and

potential energy ∑
ni

vλi(r− rni) of the electron in the field of the cores of the atom’s ideal

ordered crystal. The values h(0)n1i1γ1,n2i2γ2
are defined by the expression:

h(0)n1i1γ1,n2i2γ2
= ∑

n3i3δ3

Ei1ε̃1 S−
1
2 ∗

n3i3δ3,n1i1δ1
S

1
2
n3i3δ3,n2i2δ2

δσ1,σ2 + ∑
n3i3 6=n1i1

vn3i3
n1i1γ1,n2i2γ2

,γ = δσ. (25)

In the Formula (25)

vn3i3
n1i1γ1,n2i2γ2

=
t
ψ̃
∗
n1i1δ1

(r1, θ1,ϕ1)vi3(r3)ψ̃n2i2δ2(r2, θ2,ϕ2)r2
1 sin θ1dr1dθ1dϕ1 × δσ1,σ2 ,

Ei1ε̃1 = −me4(Zi1)
2

2}2ε̃2
1

, ε̃1 = 1, 2, 3, . . . ,

(26)

Here, r2, θ2,ϕ2 is expressed through r1, θ1,ϕ1 in accordance with Formulas (17)–(19).
The expression for r3 is obtained from expression (17) for r2 replacement xαn2i2n1i1

by xαn3i3n1i1
.

Summation over n3i3 in expression (25) means summation over rn3i3 , in accordance with
Formula (13).
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In Formula (26) and e are the mass and charge of the electron, respectively, and Zi
is the ordinal number of an atom of the sort λ located in the site ni of an ideally ordered
crystal. } denotes the Planck’s constant.

The matrix element of the electron–ion interaction Hamiltonian in Equation (6) is
given by

wniγ,n′i′γ′ = ∑
n′′ i′′

wn′′ i′′
niγ,n′i′γ′ (27)

where
wn′′ i′′

niγ,n′i′γ′ = ∑
λ

cλn′′ i′′ wλn′′ i′′
niγ,n′i′γ′ , (28)

wλn′′ i′′
niγ,n′i′γ′ = vλn′′ i′′

niγ,n′i′γ′ + ∆vλn′′ i′′
niγ,n′i′γ′ − vi′′

niγ,n′i′γ′ (29)

vλn′′ i′′
n1i1γ1,n2i2γ2

is a matrix element of the potential of the core of the atom vλ(r− rn′′ i′′ ).

The expression for vλn3i3
n1i1γ1,n2i2γ2

is obtained from Formula (26) by replacing vi3(r3)

with vλ(r3).
In Equation (28), cλni is a discrete binary random number taking the values of 1 or 0,

depending on whether an atom of type λ is at site (ni) or not, respectively. The symbol
∆vλn′′ i′′

niγ,n′i′γ′ will be defined next.
The expression for the electron–phonon interaction in Equation (7) is found through

derivatives of the potential energy of the electrons in the ion core field due to a displacement
of the atom by vector uni. In Equation (7), the value of v′niγ,n′i′γ′ is given by

v′niγ,n′i′γ′ = ∑
n′′ i′′α

v′n
′′ i′′α

niγ,n′i′γ′un′′ i′′α, (30)

where
v′n
′′ i′′α

niγ,n′i′γ′ = ∑
λ

cλn′′ i′′ v′λn′′ i′′α
niγ,n′i′γ′ (31)

with v′λn′′ i′′α
niγ,n′i′γ′ the matrix elements of the following operator:

−en′′ i′′α
d

d|r−rn′′ i′′ |
vλi′′ (|r− rn′′ i′′ |),

en′′ i′′ =
r−rn′′ i′′

|r−rn′′ i′′ |
.

(32)

The expression for v′λn3i3α
n1i1γ1,n2i2γ2

is obtained from Formula (26) by replacing in it vi3(r3)
with

−

(
xα − xαn3i3n1i1

)
r3

d
dr3

vλn3i3(r3). (33)

∆vλn′′ i′′
niγ,n′i′γ′ in Equation (29) describes electron scattering on the static displacement of

the atoms, and is defined by the equation

∆vλn′′ i′′
niγ,n′i′γ′ = ∑

α

v′λn′′ i′′α
niγ,n′i′γ′u

s,λ
n′′ i′′α (34)

where us,λ
n′′ i′′α is the α projection of the static displacement of the atom of type λ in the site,

and n′′ i′′ I caused by the difference in the atomic radii of the components of the disordered
crystal.

Upon receipt of expressions (27)–(34), it was taken into account that the potential
energy operator of the electron in the field of the atoms core can be expressed as:vni(r− r′ni),
r′ni = rni + us

ni + uni, with r being the electron’s radius vector, rni the radius-vector of
atom’s equilibrium position in the site of the crystal lattice (ni), us

ni the vector of atom’s
static displacement from equilibrium position in site (ni), and uni the atom’s displacement
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operator in site (ni). Expanding vni(r− r′ni) in the series in powers uniα and restricting
ourselves to linear terms, we arrive at expressions (27)–(34).

The matrix of the force constants arising from the direct Coulomb interaction of the
ionic cores has the form:

Φniα,n′i′α′ = −
ZniZn′ i′ e

2

4πε0|rn+ρi−rn′−ρi′ |
5×

×[3(rnα + ρiα − rn′α − ρi′α)(rnα′ + ρiα′ − rn′α′ − ρi′α′)−
−|rn + ρi − rn′ − ρi′ |2δαα′

]
, ni 6= n′i′.

(35)

where Zni is the serial number of the atom located in the lattice site ni of the disordered
crystal, which is given by the expression

Zni = ∑
λ

cλni Zi. (36)

This matrix Φniα,n′i′α′ satisfies the following constraint:

∑
n′i′

Φniα,n′i′α′ = 0. (37)

Multicenter integrals v(2)n1,n2
n3,n4 , n = (niγ) in Formula (8) can be represented as

vn1i1γ1,n2i2γ2
n3i3γ3,n4i4γ4

= e2δσ1σ4δσ2σ3

s 1
|r′−r′′ |

×ψ̃∗n1i1δ1

(
r′1, θ′1,ϕ′1

)
ψ̃
∗
n2i2δ2

(
r′′1 , θ′′1 ,ϕ′′1

)
ψ̃n3i3δ3

(
r′′2 , θ′′2 ,ϕ′′2

)
ψ̃n4i4δ4

(
r′2, θ′2,ϕ′2

)
×d3r′1d3r′′1 .

(38)

In Formula (38)

∣∣r′ − r′′
∣∣ = (∑

α

(
x′α − x′′α − xαn2i2n1i1

)2
) 1

2
, (39)

d3r′1 = r′1
2 sin θ′1dr′1dθ′1dϕ′1, (40)

When integrating over r′1, θ′1,ϕ′1 in Formula (38), r′2, θ′2,ϕ′2 should be expressed through
r′1, θ′1,ϕ′1, in accordance with Formulas (17)–(19), in which I is necessary to replace xαn2i2n1i1
with xαn4i4n1i1

. When integrating over r′′1 , θ′′1 ,ϕ′′1 in Formula (38), r′′2 , θ′′2 ,ϕ′′2 should be ex-
pressed through r′′1 , θ′′1 ,ϕ′′1 , in accordance with Formulas (17)–(19), in which it is necessary
to replace xαn2i2n1i1

with xαn3i3n2i2
.

So, Formulas (17)–(19) describe the procedure for calculating the matrix elements
h(0)n1i1γ1,n2i2γ2

, v(2)n1i1γ1,n2i2γ2
n3i3γ3,n4i4γ4

Hamiltonian (1), containing one-electron and two-electron
integrals.

3. Green’s Functions of Electrons and Phonons

We employ a Green’s function-based formalism to perform the calculations. Ultimately,
we need the real-time retarded GAB

r (t, t′) and advanced GAB
a (t, t′) Green’s functions are

each defined as follows [26]:

GAB
r (t, t′) = − i

}θ(t− t′) < [Ã(t), B̃(t′)] >,
GAB

a (t, t′) = i
}θ(t

′ − t) < [Ã(t), B̃(t′)] > .
(41)

Here, the operators are expressed in the Heisenberg representation

Ã(t) = eiH t/}A e−iH t/}, (42)
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where } is Planck’s constant, H = H − µeNe, µe is the chemical potential of the electronic
subsystem, and Ne is the electron number operator given by

Ne = ∑
niγ

a+niγaniγ. (43)

In addition, the commutator or anticommutator is defined via

[A, B] = AB∓ BA, (44)

where the commutator is used for Bose operators (−) and the anticommutator is used for
Fermi operators (+). The symbol θ(t) is Heaviside’s unit step function. The angle brackets
〈. . .〉 denote the thermal averaging with respect to the density matrix ρ

< A >= Tr (ρA), ρ = e(Ω−H)/Θ, (45)

where Ω is the thermodynamic potential of the system given by exp(Ω/Θ) = Trexp(−H/Θ)
and Θ = kbT, with kb Boltzmann’s constant and T the temperature.

The thermal Green’s functions are defined by

GAB(τ, τ′) = − < Tτ Ã(τ)B̃(τ′) >, (46)

where the imaginary-time operator Ã(τ) is derived from the real-time Heisenberg repre-
sentation and the substitution t = −i}τ. Hence,

Ã(τ) = eH τA e−H τ. (47)

In addition, the time-ordering operator satisfies

Tτ Ã(τ)B̃(τ′) = θ(τ− τ′)Ã(τ)B̃(τ′)+ ,
±θ(τ′ − τ)B̃(τ′)Ã(τ)

(48)

where the plus sign is used for Bose operators and the minus sign for Fermi operators.
We next go to the interaction representation by introducing the operator

σ(τ) = eH0 τe−H τ, (49)

with H = H0 + Hint and H0 = H0 − µeNe.
Differentiating the expression for σ(τ) in Equation (68) with respect to τ and then

integrating starting from 0, with the boundary condition σ(0) = 1, we obtain:

σ(τ) = Tτ exp

− τ∫
0

Hint(τ
′)dτ′

, (50)

where Hint(τ) = eH0 τHint e−H0 τ. Employing this result yields

Ã(τ) = σ−1(τ)A(τ)σ(τ), (51)

with A(τ) in the Heisenberg representation with respect to the noninteracting Hamiltonian.
Substituting these results into the definition of the thermal Green’s function creates the
alternate interaction-representation form for the Green’s function, given by

GAB(τ, τ′) = −< TτA(τ)B(τ′)σ(1/Θ) >0

< σ(1/Θ) >0
(52)
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where all time dependence is with respect to the noninteracting Hamiltonian and the trace
over all states is with respect to the noninteracting states

< A >0= Tr(ρ0 A), ρ0 = e(Ω0−H0)/Θ. (53)

Next, we expand expression (51) for σ(1/θ) in a series in powers of the interaction
Hamiltonian Hint(τ) and substitute this expression in Formula (53).

The diagrammatic method is generated by expanding σ(τ) in a power series in terms
of Hint(τ), and then using Wick’s theorem to evaluate the resulting operator averages.

The numbers of quantum states for different operators in the interaction Hamiltonian
Hint(τ) (5)–(11), (51) are different, and the values of the argument τ are the same.

Each operator can be assigned a quantum state number and an argument num-
ber τ, if in expression (51) for σ(1/θ) the operator Hint(τ) is replaced by an operator
Hint(τ, τ1, . . . , τk) in which the values of the argument τ for operators with different quan-
tum states are different, the matrix elements differ from the matrix elements of the operator
Hint(τ) by a factor δ(τ− τ1) . . . δ(τ− τk), and the single integral over τ is replaced by the
integral over τ, τ1, . . . , τk multiplicity k + 1. The multiplicity of the integral is different
for different types of interaction. In expression (53) for GAB(τ, τ′), the term of the series
for σ(1/θ) (51) forms a multiple sum over quantum states and an integral over τ of the
mean T-product of operators Hint(τ, τ1, . . . , τk) multiplied by an operator A(τ)B(τ′). The
T-product of operators is averaged over the occupation numbers of the quantum states of
the system of noninteracting electrons and phonons, in accordance with Formula (53). The
numbers of the quantum states for the operators in the indicated T-product are ordered
by the matrix elements of the interaction operators Hint(τ, τ1, . . . , τk), in accordance with
Formulas (5)–(11), in such a way that pairs of operators are formed. This is due to the
fact that among the average T-products of operators, only those in which the number of
operators is even for the electron subsystem and the phonon subsystem are nonzero. The
quantum state for each operator of the pair, except for the operators A(τ), B(τ′), coincides
with one of the quantum states for the corresponding matrix element of the interaction
operators Hint(τ, τ1, . . . , τk) in the given product.

Let us give the averaging technique in expression (71) a simpler form. For this, in the
T-product of each pair of operators an1(τ1)a+n2

(τ2), n = (niγ) for the electron subsystem and
un1(τ1)un2(τ2), Pn1(τ1)Pn2(τ2), un1(τ1)Pn2(τ2), Pn1(τ1)un2(τ2), n = (niα) for the phonon
subsystem, in the Hamiltonian of the system of noninteracting electrons and phonons H0
(2)–(4), (53), we compare the sum of the products of pairs of operators H0n1n2 , the numbers
of quantum states of which coincide with the numbers of quantum states depending on τ
the operators of the pair.

Provided that the numbers of quantum states for the operators in the T-product are
ordered by the matrix elements of the interaction operators Hint(τ, τ1, . . . , τk) standing in it,
the operators exp

(
−H0n1n2 /θ

)
, exp

(
−H0n1n2τ

)
change places with the products depending

on τ other pairs of operators. It follows from this that the average of the T-product of
several operators in expression (53) is equal to the product of the average T-products of
pairs of operators that determine the matrices of the Green’s functions for the zero-order
Hamiltonian H0. This statement also extends to the case when the quantum states for the
operators of a pair coincide with the quantum states for the operators of other pairs. This
follows from the fact that the distribution function of a system of an infinite number of
particles over the occupation numbers of quantum states has a sharp maximum, and the
most probable value of a physical quantity is equal to its average value. The quantum
state ni and the argument τi for each operator of the pair, except for the operators A(τ),
B(τ′), coincides with one of the quantum states ni and arguments τi for the corresponding
matrix element of the interaction operators Hint(τ, τ1, . . . , τk) in the given product. In
expression (71), the Green’s function GAB(τ, τ′) is summed over quantum states ni and
integrated over arguments τi.
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The averaging technique described above in expression (71) for the Green’s function
GAB(τ, τ′) is the essence of Wick’s theorem. This technique then generalizes the approach
used for the homogeneous system [27].

The technique for calculating the Green’s function GAB(τ, τ′) (53) becomes clearer if the
terms on the right-hand side of Equation (53) are represented in the form of diagrams. If the
Green’s function of the system is expressed as a series only over connected diagrams [27],
then the denominator in Formula (53) will cancel out with the same factor in the numerator.
So, the thermal Green’s function is expanded in terms of connected diagrams. The indicated
diagrammatic series can be easily summed up, which makes it possible to go beyond the
framework of the first approximations of the perturbation theory and obtain equations for
the Green’s functions of the system.

Summing up the indicated series, using the standard relation between the spectral
representations of the temperature and real-time Green’s functions and performing an
analytical continuation on the real axis, we obtain the following equations for the retarded
Green’s functions [26] (hereinafter the dependence on r is suppressed):

Gaa+(ε) = Gaa+
0 (ε) + Gaa+

0 (ε)
(

w + Σeph(ε) + Σee(ε)
)

Gaa+(ε)

Guu(ε) = Guu
0 (ε) + Guu

0 (ε)
(

∆Φ + Σphe(ε) + Σphph(ε)
)
×

×Guu(ε) + GuP
0 (ε)∆M−1GPu(ε),

GPP(ε) = GPP
0 (ε) + GPP

0 (ε)∆M−1GPP(ε) + GPu
0 (ε)×

×
(

∆Φ + Σphe(ε) + Σphph(ε)
)

GuP(ε),

GuP(ε) = GuP
0 (ε) + GuP

0 (ε)∆M−1GPP(ε) + Guu
0 (ε)×

×
(

∆Φ + Σphe(ε) + Σphph(ε)
)

GuP(ε),

GPu(ε) = GPu
0 (ε) + GPu

0 (ε)
(

∆Φ + Σphe(ε) + Σphph(ε)
)
×

×Guu(ε) + GPP
0 (ε)∆M−1GPu(ε),

(54)

where ε = }ω. Here, Gaa+(ε), Guu(ε), GPP(ε), GuP(ε), GPu(ε) are the real-frequency
representation of the single-particle Green’s function of the electrons, the coordinate-
coordinate, momentum–momentum, coordinate–momentum, and momentum–coordinate
Green’s functions of the phonons, respectively; and Σeph(ε), Σphe(ε), Σee(ε), Σphph(ε) are
the corresponding self-energies (mass operators) for the electron–phonon, phonon–electron,
electron–electron, and phonon–phonon interactions.

The real-time and real-frequency Green’s functions are related by standard Fourier
transform relations given by

GAB
r,a (t) =

1
2π

∞∫
−∞

GAB
r,a (ω) e−iωtdω (55)

and

GAB
r,a (ω) =

∞∫
−∞

GAB
r,a (t) eiωtdt. (56)

The thermal Green’s functions are periodic (bosons) or antiperiodic (fermions) on the
interval −1/Θ ≤ τ < 1/Θ, and hence have a Fourier series representation in terms of their
Matsubara frequencies, as follows:

GAB(τ) = Θ∑
ωn

GAB(ωn) e−iωnτ (57)

and

GAB(ωn) =
1
2

1/Θ∫
−1/Θ

GAB(τ) eiωnτdτ, (58)
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where the Matsubara frequencies satisfy

ωn =

{
2nπ Θ for Bose particles,
(2n + 1)π Θ for Fermi particles,

n = 0, ±1, ±2, . . .
(59)

The electronic Green’s functions are infinite matrices with indices given by the lattice
site n, the basis site i, and the other quantum numbers γ. Similarly, the phonon Green’s
functions also are infinite matrices with the same lattice and basis site dependence, plus
a dependence on the spatial coordinate direction α. Using the equations of motion for
Green’s functions, one can obtain simple expressions for the zero-order Green’s functions,
namely [26]:

Gaa+
0 (ε) = [ε− H(1)

0 ]
−1

, (60)

with
H(1)

0 = ‖h(0)niγ,n′i′γ′‖, (61)

Guu
0 (ε) =

[
ω2M(0) −Φ(0)

]−1
, (62)

with
Φ(0) = ‖Φ(0)

niα,n′i′α′‖ (63)

and
M(0) = ‖Miδnn′δii′δαα′‖. (64)

Here, the double lines denote a matrix.
When the perturbations are small, given by(

ε2

}2 ∆M + ∆Φ + Σphe(ε) + Σphph(ε)
)

niα,n′i′α′

Φ(0)
niα,n′i′α′

<< 1, (65)

then the solution of the system of equations in Equation (55) becomes

Gaa+(ε) =
[
ε− H(1)

0 −
(

w + Σeph(ε) + Σee(ε)
)]−1

, (66)

Guu(ε) =

[
ω2M(0) −Φ(0) −

(
ε2

}2 ∆M + ∆Φ + Σphe(ε) + Σphph(ε)

)]−1

, (67)

GPP(ε) =
ε2

}2 (M(0))
2

Guu(ε), (68)

where
∆M = ‖(Mi −Mni)δnn′δii′δαα′‖, ε = }ω. (69)

The mass operator of the Green’s function of electrons for the electron–phonon inter-
action Σeph(τ, τ′) is described by the diagram in Figure 1. The mass operator of the Green’s
function of electrons for the electron–phonon interaction Σeph(τ, τ′) is described by the
diagram in [26,29,30].

Solid lines in Figure 1 correspond to the Green’s function of electrons Gaa+
niγ,n′i′γ′(τ, τ′)

and dashed lines correspond to the Green’s function of phonons Guu
niα,n′i′α′(τ, τ′). The

vertex part Γn2i2α2
niγ,n1i1γ1

(τ2, τ, τ1) of the mass operator of the Green’s function is described by
the diagrams in Figure 2.
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Figure 2. Diagrams for the vertex part Γn2i2α2
niγ,n1i1γ1

(τ2, τ, τ1) = Γñ2α2
ñγ,ñ1γ1

. Here ñ = (niτ).

The not shaded triangle in Figure 2 corresponds to equation

Γn2i2α2
0 niγ,n1i1γ1

(τ2, τ, τ1) = v′n2i2α2
niγ,n1i1γ1

δ(τ− τ2) δ(τ− τ1). (70)

In Figures 1 and 2, summation for internal points ñγ is carried out. Summation of ñγ
provides summation of niγ and integration over τ. Expressions that correspond to each
diagram are attributed to multiplier (−1)n+F, where n is the diagram’s order (namely the
number of vertices Γ0 in the diagram), and F is the number of lines for the Green’s function
of electrons Gaa+ . This function goes out and goes in in the same vertices.

Explicitly, the electron–phonon self-energy becomes

Σeph niγ,n′i′γ′(ε) = − 1
4πi

∞∫
−∞

dε′cot h
(
ε′
2Θ

)
Γ(0)n1i1α1

niγ, n3i3γ3
×

×
[

Guu
n1i1α1,n2i2α2

(ε′)− Guu ∗
n1i1α1,n2i2α2

(ε′)
]

Gaa+
n3i3γ3,n4i4γ4

×
×(ε− ε′)Γn2i2α2

n4i4γ4,n′i′γ′ ,

(71)

Γ(0)n1i1α1
niγ, n3i3γ3

= v′n1i1α1
niγ, n3i3γ3

. (72)

where repeated indices are summed over.
Phonon–electron interaction is described by the diagram in Figure 3. Phonon–electron

interaction is described by the diagram in [29,30].
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Figure 3. Diagram for Σphe niα,n′ i′α′ (τ, τ′) = Σphe ñα,ñ′α′ . In Figure 3, ñ = (niτ).

The designation in Figure 3 corresponds to designations in Figures 1 and 2.
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The self-energy of the phonon due to the phonon–electron interaction is given by

Σphe niα,n′i′α′(ε) =
1

2πi

∞∫
−∞

dε′ f (ε′)Γ (0)niα
n2i2γ2,n1i1γ1

×

×
{[

Gaa+
n1i1γ1,n3i3γ3

(ε+ ε′)− Gaa+∗
n1i1γ1,n3i3γ3

(ε+ ε′)
]
×

×Gaa+∗
n4i4γ4,n2i2γ2

(ε′) + Gaa+
n1i1γ1,n3i3γ3

(ε+ ε′)×
×
[

Gaa+
n4i4γ4,n2i2γ2

(ε′)− Gaa+∗
n4i4γ4,n2i2γ2

(ε′)
]}
×

×Γ n′i′α′
n3i3γ3,n4i4γ4

.

(73)

where f (ε) is the so-called Fermi–Dirac distribution function.
Diagrams for the mass operator Σee(τ, τ′) that describe the electron–electron inter-

action, are shown in Figure 4. Diagrams for the mass operator Σee(τ, τ′) that describe
electron–electron interaction, are shown in [26,29,30].
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Figure 4. Diagrams for Σee niγ,n′ i′γ′ (τ, τ′) = Σee ñγ,ñ′γ′ . Here ñ = (niτ).

The vertex parts Γn2i2γ2,n1i1γ1
niγ,n′i′γ′ (τ2, τ1τ, τ′) are shown in diagrams in Figure 5.
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ṽ(2)niγ,n2i2γ2
n1i1γ1,n′i′γ′ = v(2)niγ,n2i2γ2

n1i1γ1,n′i′γ′ − v(2)niγ,n2i2γ2
n′i′γ′ ,n1i1γ1

(75)

The mass operator that describes the electron–electron interaction is:

Σee niγ,n′i′γ′(ε) = Σ(1)
ee niγ,n′i′γ′ + Σ(2)

ee niγ,n′i′γ′(ε), (76)

Σ(1)
ee n,n′ = −

1
2πi

∞∫
−∞

dε′ f
(
ε′
)

Γ (0) n2,n1
n, n′

[
Gaa+

n1,n2
(ε′)− Gaa+ ∗

n1,n2
(ε′)

]
, (77)

Σ(2)
ee n,n′(ε) =

(
1

2πi

)2 ∞∫
−∞

dε1

∞∫
−∞

dε2 f (ε1) f (ε2)Γ
(0) n,n3
n2,n1

×
[

Gaa+
n2,n5

(ε− ε1 − ε2)Gaa+∗
n1,n4

(ε1)−

−Gaa+∗
n2,n5

(ε− ε1 − ε2)Gaa+
n1,n4

(ε1)
]
×

×
[

Gaa+
n6,n3

(ε2)− Gaa+ ∗
n6,n3

(ε2)
]

−
[

Gaa+
n2,n5

(ε− ε1 − ε2)− Gaa+ ∗
n2,n5

(ε− ε1 − ε2)
]
×

×
[

Gaa+
n1,n4

(ε1)Gaa+
n6,n3

(ε2)

−Gaa+ ∗
n1,n4

(ε1)Gaa+ ∗
n6,n3

(ε2)
]}

Γ n5,n6
n4, n′ ,

(78)
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Γ(0)n,n3
n2,n1 = ṽ(2)n,n3

n2,n1 = v(2)n,n3
n2,n1 − v(2)n,n3

n1,n2 n = niγ (79)

A similar result for the contribution to the phonon self-energy Σphph(ε) from phonon–
phonon coupling is given in [26].

In deriving the expressions in Equations (72), (74), (78), and (79), we employed the
standard resummation techniques for any function φ(z) that is analytic in the region
covered by contour C, which encloses all of the Matsubara frequencies. Namely, we have

Θ ∑
ωn
φ(iωn) =

1
4πi
∮
C

dz coth
( z

2Θ
)
φ(z) ,

(ωn = 2nπ Θ)
(80)

for the Bosonic case, and

Θ ∑
ωn
φ(iωn) = − 1

2πi
∮
C

dz f̃
( z

Θ
)
φ(z) ,

(ωn = (2n + 1)π Θ)
(81)

for the Fermionic case, with

f̃
( z

Θ

)
=

1
exp

( z
Θ
)
+ 1

. (82)

We comment that for the many-body Green’s functions described here, it is customary
to have the chemical potential situated at zero frequency, as dine here.

In general, the renormalization of the vertex of the mass operator of the Green’s
functions in expressions (72), (74), and (79) can be performed using Figures 2 and 5. The
diagrams in Figures 2 and 5 correspond to the equation

Γn′i′α′
n3i3γ3,n4i4γ4

= Γ(0)n′i′α′
n3i3γ3,n4i4γ4

− 1
2πi

∞∫
−∞

dε f (ε)Γ(0)n′i′α′
n5i5γ5,n6i6γ6

×
[

Gaa+
n6i6γ6,n7i7γ7

(ε)Gaa+
n8i8γ8,n5i5γ5

(ε)− Gaa+∗
n6i6γ6,n7i7γ7

(ε)Gaa+∗
n8i8γ8,n5i5γ5

(ε)
]

×Γ(0)n9i9α9
n7i7γ7,n8i8γ8

Guu
n9i9α9,n10i10α10

(0)Γn10i10α10
n3i3γ3,n4i4γ4

(83)

and

Γ n5,n6
n4, n′ = Γ(0) n5,n6

n4, n′ −
1

2πi

∞∫
−∞

dε f (ε)Γ(0) n5,n7
n4, n8

×
[

Gaa+
n7,n9

(ε)Gaa+∗
n8,n10

(ε)− Gaa+∗
n7,n9

(ε)Gaa+
n8,n10

(ε)
]

×Γ n9,n6
n10, n′ , n = niγ.

(84)

Summation is implied over repeated indices in expressions (84) and (85).
The Fermi level εF ≡ µe of the system is determined by equation:

< Z >=

∞∫
−∞

f (ε) ge(ε) dε, (85)

f (ε) =
1

exp(ε−εF
Θ ) + 1

(86)

where < Z > is the average number of electrons per atom and ge(ε) is the many-body
electronic density of states, which satisfies

ge(ε) = −
1

πνN
Im Tr

〈
Gaa+(ε)

〉
c

(87)

Here, 〈. . .〉c denotes configurational averaging over the disorder, N is the number of
primitive lattice cells, and ν is the number of atoms per primitive cell. We drop the letter c
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on the configurational averaging for simplicity. In Equation (86), 〈Z〉 is the average number
of electrons per atom.

It should be noted that the first term in the electron self-energy due to electron–electron
interactions, Σ(1)

ee niγ,n′i′γ′ in Equation (77), describes the Coulomb and exchange electron–

electron interactions in the Hartree–Fock approximation. The second term, Σ(2)
ee niγ,n′i′γ′(ε),

which is caused by corrections beyond Hartree–Fock, describes the effects of electron
correlations. As opposed to the procedures used in [13–19], the long-range Coulomb
interaction of electrons located at different lattice sites of the crystal is described by taking
into account an arbitrary number of energy bands.

The expression for the Green’s function in Equations (67) and (68) differs from the
corresponding expressions for the Green’s function of a single-particle Hamiltonian of a
disordered system, only from the different self-energy contributions. Hence, we solve for
the Green’s function using the well-known methods of disordered systems theory [31,32].

To find the density of states by Formula (88), it is necessary to find the average values
of the Green’s functions defined by Formulas (67) and (68).

4. Localized Magnetic Moments

As we will be working with magnetic moments in the remainder of the paper, we
now slightly modify our notation so that the symbol γ = δσ = ε̃lmσ now refers to all
other quantum numbers, except for spin, and we introduce the spin quantum number σ
explicitly in all of the following equations. The electron–electron self-energy in Equation (67)
requires the occupation number Z λmλi

niδσ of the different electronic states (niδσ), where we are
explicitly including the dependence on σ. The explicit values for Z λmλi

niδσ are calculated from
Equation (86), where the total electronic density of states ge(ε) is replaced by the partial
density of states gλ mλi

niδσ (ε) for energy band δ and spin projection σ, to allow for magnetic
solutions. The occupation numbers Z λmλi

niδσ and the partial density of states gλ mλi
niδσ (ε) then

satisfy

Z
λmλi

niδσ =

∞∫
−∞

f (ε) gλmλi
niδσ(ε) dε, (88)

gλmλi
niδσ(ε) = −

1
π

Im
〈

Gaa+
niδσ,niδσ(ε)

〉∣∣∣
(ni)∈λmλi

(89)

Note that disorder averaging is done under the assumption that an atom of type λ is
located at the site (ni), and its projection of the localized magnetic moment onto the z-axis
is equal to mλi. The probability of this configuration is Pλmλi

ni , and we have the obvious
constraint that

∑
λ,mλi

Pλmλi
ni = 1. (90)

The total charge and magnetization for each orbital on a site are given by

Zλmλi
niδ = Zλmλi

niδσ + Zλmλi
niδ,−σ, mλiδ = Zλmλi

niδσ − Zλmλi
niδ,−σ, (91)

and by

Zλmλi
niδσ =

Zλmλi
niδ + mλiδ

2
, Zλmλi

niδ,−σ =
Zλmλi

niδ −mλiδ

2
, (92)

respectively. We need to sum over all other quantum numbers to get the totals:

Zλmλi
ni = ∑

δ

Zλmλi
niδ , mλi = ∑

δ

mλiδ. (93)
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5. Density of Electronic and Phononic States

In Equations (67) and (68), by introducing the mass operator as the sum of one site
operators and selecting it as a zero approximation, the effective medium Green’s function
cluster expansion for Green’s functions Gaa+(ε), Guu(ε), is performed. The specified
expansion is a generalization of the cluster expansion for the Green’s function Gaa+(ε) of
single-particle Hamiltonian. Green’s functions of the effective environment are defined by
the expressions:

G̃aa+(ε) =
[
ε− h(0) − Σ̃eph(ε)− Σ̃ee(ε)− σe(ε)

]−1
, (94)

G̃uu(ε) =

[
ε2

}2 M(0) −Φ(0) − Σ̃phe(ε)− σph(ε)

]−1

. (95)

Expressions for the operators Σ̃eph(ε), Σ̃phe(ε), and Σ̃ee(ε) are obtained from the ex-
pressions for the mass operators Σeph(ε), Σphe(ε), and Σee(ε) (72)–(80) by replacing the

vertex parts Γ(0)n1i1α1
niγ, n3i3γ3

, Γ(0)n,n3
n2,n1 , n ≡ niγ by their expressions for ideally ordered crystals,

and replacing the Green’s functions Gaa+(ε), Guu(ε) with the Green’s functions of the
effective medium G̃aa+(ε), G̃uu(ε). Expressions for operators σe(ε) and σph(ε) in Formulas
(95) and (96) will be given below.

The Green’s functions in Equations (67) and (68) satisfy a Dyson equation that can be
expressed in terms of a T-matrix via:

G(ε) = G̃(ε) + G̃(ε) T(ε) G̃(ε), (96)

where the T-matrix T is represented by a series, in which each term describes the scattering
of clusters with different numbers of nodes expressed schematically by

T = ∑
(n1i1)

tn1i1 + ∑
(n1i1) 6=(n2i2)

T(2) n1i1,n2i2 + . . . (97)

Here, we have

T(2) n1i1,n2i2 =
[

I − tn1i1 G̃tn2i2 G̃
]−1

tn1i1 G̃tn2i2
[

I + G̃tn1i1
]
, (98)

where tn1i1 is the on-site scattering operator, which is given by

tn1i1 =
[

I − (Σn1i1 − σn1i1)G̃
]−1

(Σn1i1 − σn1i1). (99)

The self-energy employed in Equation (67), Σn1i1
e (ε), satisfies

w + Σeph(ε) + Σee(ε)− Σ̃eph(ε)− Σ̃ee(ε) = ∑
(n1i1)

Σn1i1
e (ε), (100)

for the electrons. For the phonons, we have

ε2

}2 ∆M + ∆Φ + Σphe(ε) + Σphph(ε)−
−Σ̃phe(ε)− Σ̃phph(ε) = ∑

(n1i1)
Σn1i1

ph (ε) (101)
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Using Equations (72), (77)–(79), and (101), we obtain the expression for the intrinsic
energy part Σλn1i1

eniγ,n′i′γ′(ε), which describes the scattering of electrons:

Σλmλini
en1i1γ1,n2i2γ2

(ε) = wλni
n1i1γ1,n2i2γ2

+

+ ∑
n3i3γ3
n4i4γ4

ṽ(2)n1i1γ1,n4i4γ4
n3i3γ3,n2i2γ2

(
Zλmλini

n3i3γ3,n4i4γ4
− Z̃λmλini

n3i3γ3,n4i4γ4

)
, (102)

where

Zλmλini
n3i3γ3,n4i4γ4

= − 1
π

∞∫
−∞

f (ε, εF) Im
〈

Gaa+
n3i3γ3,n4i4γ4

(ε)
〉∣∣∣

(ni)∈λmλi
dε. (103)

The value of Z̃λmλini
n3i3γ3,n4i4γ4

in Equation (103) is derived from Equation (104) by replacing
the full Green’s function by the effective medium Green’s function. The diagonal elements
of the matrix Zλmλini

n3i3γ3,n4i4γ4
in Equation (104) are equal to the occupation numbers of the

electron states Z λmλi
niδσ in Equation (89).

Using Equations (10), (70), (74), and (102), we obtain the expression for the intrinsic
energy part Σλn1i1

phniα,n′i′α′(ε), which describes the scattering of phonons:

Σλn1i1
phniα,n′i′α′(ε) =

ε2

}2 (Mi1 −Mλ)δnn′δii′δαα′ (104)

It should be noted that, in the limit of an infinite crystal, on the right-hand side of
Equations (103) and (105), the terms inversely proportional to the number of lattice sites
are neglected.

We require the fulfillment of the condition〈
t0i1
〉
= 0, (105)

from which follows the system of coupled equations for the operator, in Formulas (95) and (96):

σ
0i1
e (ε) =

〈
[1− (Σ0i1

e (ε)− σ0i1
e (ε))G̃aa+(ε)]

−1
〉−1
× ,

×
〈
[1− (Σ0i1

e (ε)− σ0i1
e (ε))G̃aa+(ε)]

−1
Σ0i1

e (ε)

〉 (106)

σ
0i1
ph (ε) =

〈
[1− (Σ0i1

ph (ε)− σ
0i1
ph (ε))G̃

uu(ε)]
−1
〉−1
× .

×
〈
[1− (Σ0i1

ph (ε)− σ
0i1
ph (ε))G̃

uu(ε)]
−1

Σ0i1
ph (ε)

〉 (107)

The matrix elements of the Green’s function of the electron subsystem of the effective
medium can be calculated using Fourier transformation

G̃aa+
niγ,n′i′γ′(ε) =

1
N ∑

k
G̃aa+

iγ,i′γ′(k, ε)eik(rni−rn′ i′ ), (108)

G̃aa+(k, ε) =
(
ε− H̃(k, ε)

)−1
, (109)

where
H̃(k, ε) = h(0)(k) + Σ̃eph(k, ε) + Σ̃ee(k, ε) + σe(k, ε), (110)

N is the number of primitive unit cells.
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We do a similar procedure for the effective medium phonon Green’s function, which
satisfies

G̃uu
niα,n′i′α′(ε) =

1
N ∑

k
G̃uu

iα,i′α′(k, ε)eik(rni−rn′ i′ ), (111)

G̃uu(k, ε) =
(
ε2

}2 M(0) − Φ̃(k, ε)
)−1

, (112)

where we have

Φ̃(k, ε) = Φ(0)(k) + Σ̃phe(k, ε) + Σ̃phph(k, ε) + σph(ε), (113)

M(0)
iα,i′α′ = Miδii′δαα′ . (114)

Note that wave vector k varies within the first Brillouin zone. Furthermore, we have
that Σ̃eph(k, ε) is the Fourier transformation of the matrix Σeph niγ,n′i′γ′(ε) given in Equation

(72), for which the terms v′n1i1α1
niγ, n3i3γ3

are replaced by the values for a pure crystal and the
corresponding Green’s functions are those of the effective medium. The other self-energies
given by Σ̃ee(k, ε), Σ̃phe(k, ε), and Σ̃phph(k, ε) are defined similarly. In Equation (114),
Φ(0)(k) is the Fourier transform of the matrix Φ(0)

niα,n′i′α′ , which describes the atomic
nucleus repulsion. The self-energy Σ̃phe(k, ε) describes the attractive interaction between
the atomic nuclei and the electrons.

The matrix Σλn1i1
phniα,n′i′α′(ε) in expression (105) is diagonal. From expression (108), it

follows that the matrix σph(ε) is also diagonal, and its Fourier transform σphiα,i′α′(ε) =
σphi(ε)δii′δαα′ in expression (114) does not depend on the wave vector k. In the diagonal

disorder approximation, the matrix wλn1i1
niγ,n′i′γ′ in expression (103) is diagonal in indices

n, n′. Neglecting the second term on the right-hand side of Equation (103), we obtain from
Equation (107) that in this approximation the matrix σe(ε) is also diagonal in indices n, n′,
and its Fourier transform σeiγ,i′γ′(ε) in expression (111) does not depend on wave vector k.
The Fourier transform of the mass operator of electron–phonon interaction has the form:

Σ̃eph iγ,i′γ′(k, ε) = − 1
4πi

1
N

∞∫
−∞

dε1cot h
( ε1

2Θ
)

×∑
k1

Γ(0)i1α1
iγ, i3γ3

(−k, k− k1)
[

G̃uu
i1α1,i2α2

(k1ε1)− G̃uu ∗
i1α1,i2α2

(k1ε1)
]

×G̃aa+
i3γ3,i4γ4

(k− k1, ε− ε1)Γ̃
i2α2
i4γ4,i′γ′(−k + k1, k).

(115)

The Fourier transform of the phonon–electron interaction mass operator is:

Σ̃phe niα,n′i′α′(k, ε) = 1
2πi

1
N

∞∫
−∞

dε1 f (ε1)∑ Γ (0)iα
i2γ2,i1γ1

(−k1, k + k1)

×
{[

G̃aa+
i1γ1,i3γ3

(k + k1, ε+ ε1)− G̃aa+∗
i1γ1,i3γ3

(k + k1, ε+ ε1)
]

×G̃aa+∗
i4γ4,i2γ2

(k1, ε1) + G̃aa+
i1γ1,i3γ3

(k + k1, ε+ ε1)

×
[

G̃aa+
i4γ4,i2γ2

(k1, ε1)− G̃aa+∗
i4γ4,i2γ2

(k1, ε1)
]}

Γ̃ i′α′
i3γ3,i4γ4

(−k− k1, k1).

(116)

The vertex parts of the mass operators of electron–phonon and phonon–electron
interactions are determined by the equation:
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Γ̃ni′α′
i3γ3,i4γ4

(k1, k2) = Γ(0)i′α′
i3γ3,i4γ4

(k1, k2)− 1
2πi

1
N

∞∫
−∞

dε f (ε)

×∑ Γ(0)i′α′
i5γ5,i6γ6

(k1 + k2 − k5, k5)

×
[

G̃aa+
i6γ6,i7γ7

(k5, ε)G̃aa+
i8γ8,i5γ5

(−k1 − k2 + k5ε)

− G̃aa+∗
i6γ6,i7γ7

(k5, ε)G̃aa+∗
i8γ8,i5γ5

(−k1 − k2 + k5ε)
]

×Γ(0)i9α9
i7γ7,i8γ8

(−k5,−k1 − k2 + k5)G̃uu
i9α9,i10α10

(k1 + k2, 0)

×Γ̃i10α10
i3γ3,i4γ4

(k1, k1 + k2).

(117)

In expressions (116)–(118)

Γ(0)iα
i1γ1,i2γ2

(k1, k2) =

∑
n1,n2

v′niα
n1i1γ1,n2i2γ2

exp
(
ik1
(
rn1i1 − rni

)
+ ik2

(
rn2i2 − rni

))
. (118)

The Fourier transform of the mass operator of the electron–electron interaction can be
represented as:

Σ̃ee iγ,i′γ′(k, ε) = Σ̃(1)
ee iγ,i′γ′(k) + Σ̃(2)

ee iγ,i′γ′(k, ε), (119)

Σ̃(1)
ee iγ,i′γ′(k) = −

1
2πi

1
N

×
∞∫
−∞

dε1 f (ε1)∑
k1

Γ (0) i2γ2,i1γ1
iγ,i′γ′ (−k,−k1, k1)

×
[

G̃aa+
i1γ1,i2γ2

(k1, ε1)− G̃aa+ ∗
i1γ1,i2γ2

(k1, ε1)
] , (120)

Σ̃(2)
ee iγ,i′γ′(k, ε) =

(
1

2πi

)2 1
N2

∞∫
−∞

dε1

∞∫
−∞

dε2

× f (ε1) f (ε2) ∑
k1,k2

Γ (0) iγ,i3γ3
i2γ2,i1γ1

(−k,−k1 − k2 + k, k1)

×
{[

Gaa+
i2γ2,i5γ5

(k− k1 − k2, ε− ε1 − ε2)Gaa+∗
i1γ1,i4γ4

(k1, ε1)−

−Gaa+∗
i2γ2,i5γ5

(k− k1 − k2, ε− ε1 − ε2)Gaa+
i1γ1,i4γ4

(k1, ε1)
]

×
[

G̃aa+
i6γ6,i3γ3

(k2, ε2)− G̃aa+∗
i6γ6,i3γ3

(k2, ε2)
]

−
[

G̃aa+
i2γ2,i5γ5

(k− k1 − k2, ε− ε1 − ε2)

−G̃aa+∗
i2γ2,i5γ5

(k− k1 − k2, ε− ε1 − ε2)
]

×
[

G̃aa+
i1γ1,i4γ4

(k1, ε1)G̃aa+
i6γ6,i3γ3

(k2, ε2)

−G̃aa+∗
i1γ1,i4γ4

(k1, ε1)G̃aa+∗
i6γ6,i3γ3

(k2, ε2)
]}

×Γ̃ i5γ5,i6γ6
i4γ4,i′γ′ (k1 + k2 − k,−k2, k1).

(121)

The vertex part of the mass operator of the electron–electron interaction is determined
by the equation:

Γ̃ i5γ5,i6γ6
i4γ4,i′γ′ (k1, k2, k3) = Γ (0)i5γ5,i6γ6

i4γ4,i′γ′ (k1, k2, k3)

− 1
2πi

1
N

∞∫
−∞

dε f (ε)∑
k4

Γ(0) i5γ5,i7γ7
i4γ4,i8γ8

(k1, k2, k4)

×
[

G̃aa+
i7γ7,i9γ9

(k4, ε)G̃aa+∗
i8γ8,i10γ10

(−k1 − k2 − k4, ε)

−G̃aa+∗
i7γ7,i9γ9

(k4, ε)G̃aa+
i8γ8,i10γ10

(−k1 − k2 − k4, ε) ]

×Γ̃ i9γ9,i6γ6
i10γ10,i′γ′(k1 + k2 + k4,−k4, k3).

(122)
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In expression (123)

Γ(0)i2γ2,i3γ3
i1γ1,iγ (k1, k2, k3) =

∑
n1,n2,n3

ṽ(2) n1i1γ1,n2i2γ2
n3i3γ3,niγ exp

(
ik1
(
rn1i1 − rni

))
× exp

(
ik2
(
rn2i2 − rni

)
+ ik3

(
rn3i3 − rni

))
.

(123)

Cluster decomposition for the Green’s function of electrons and phonons of disordered
crystal can be obtained from Equations (95)–(100). The density of the electron and phonon
states are presented as infinite series. Here, processes of scattering on clusters with different
numbers of atoms are described by each term. It is shown that the contribution of the
scattering processes of electrons and phonons in clusters decreases with increasing the
number of atoms in the cluster by a small parameter

p(ε) =
1

rν

∣∣∣∣∣∣ ∑
(n2i2) 6=(n1i1),i,γ

〈
tn1i1(ε)G̃(ε)tn2i2(ε)G̃(ε)

〉
0iγ,0iγ

∣∣∣∣∣∣, (124)

where r is the total number of energy bands included in the calculation.
We have shown previously [26,30–32] that this parameter remains small when many

parameters of the system are changed, except possibly for narrow energy intervals near the
band edges.

By neglecting the contribution of processes of electron scattering in clusters consisting
of three or more atoms that are small by the above parameter in Equation (125) for the
density of electronic states, we obtain:

ge(ε) =
1
v ∑

i,δ,σ,λ,mλi

Pλmλi
0i gλmλi

0 iδσ(ε), (125)

gλmλi
0 iδσ(ε) = −

1
π Im

{
G̃ + G̃ tλmλi0i G̃ + ∑

(l j) 6= (0i)
λ′, mλ′ j

P
λ′ mλ′ j/λmλi

l j 0 i

×G̃
[
tλ
′mλ′ j l j + T(2)λmλi 0i,λ′mλ′ j l j

]
G̃
}0iδσ,0iδσ

,

(126)

T(2)λmλi 0i,λ′mλ′ j l j =
[

I − tλmλi 0iG̃tλ
′mλ′ j l jG̃

]−1

×tλmλi 0iG̃tλ
′mλ′ j l j

[
I + G̃tλmλi 0i

] (127)

where G̃ = G̃aa+(ε).
Similarly averaging of the phonon Green’s function Guu(ε) yields the phononic density

of states:
gph(ε) =

1
ν ∑

i,α,λ
Pλ0ig

λ
0iα (ε), (128)

gλ0iα(ε) = −
1
π 2 ε}2 MiIm

{
G̃ + G̃ tλ 0i G̃ + ∑

(l j) 6= (0i)
λ′

Pλ
′/λ

l j 0i

×G̃
[
tλ
′ l j + T(2)λ 0i,λ′ l j

]
G̃
}0iα,0iα

,

(129)

where G̃ = G̃uu(ε).

In Equation (127), P
λ′ mλ′ j/λmλi

l j 0 i is the conditional probability to find an atom of type λ′

at site (lj) for the atom with magnetic moment mλ′j, provided that the sites in the unit cell

at the origin (0i) have an atom of type λ with a magnetic moment mλi. Here, tλmλi
ni is the
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value of the matrix element of a single-center operator for scattering in the case where an
atom of type λ is located at site (ni) and has a magnetic moment mλi.

When the system is disordered, we need to consider a random arrangement of the
disordered atomic sites. Hence, in Equation (129), the probability of an atom of type λ to be
at site (0i) is given by

Pλ0i =< cλ0i >, (130)

where cλni is a discrete binary random number taking the values of 1 or 0, depending on
whether an atom of type λ is at site (ni) or not, respectively (36). The joint probabilities in
Equations (126), (127), (129), and (130) are defined by the following:

Pλ
′ λ

l j 0i = Pλ0i Pλ
′/λ

l j 0i =< cλ
′

l j cλ0i >,

Pλmλi
0i = Pλ0i P mλi

0i , P
λ′ mλ′ j/λmλi

l j 0i = Pλ
′ /λ

l j 0i P
mλ′ j/ mλi

l j 0i

P
mλ′ j mλi

l j 0i = Pmλi
0i P

mλ′ j/mλi

l j 0i =< c
mλ′ j
l j cmλi

0i > .

(131)

The probabilities are determined by the interatomic pair correlations ε B B
lj 0i, ε

µ−
λ′ j µ

−
λi

l j 0i
via [30]:

Pλ
′/λ

l j 0i = Pλ
′

l j +
εB B

lj 0i

Pλ0i
(δλ′B − δλ′A)(δλB − δλA),

P
mλ′ j/mλi

l j 0i = P
mλ′ j
l j +

ε
µ−
λ′ j µ

−
λi

l j 0i

P
mλi
0i

(
δmλ′ j ,µ

−
j
−

−δmλ′ j ,µ
+
j

)(
δmλi ,µ

−
i
− δmλi ,µ

+
i

) , (132)

where δ is the Kronecker delta function. Note that the interatomic pair correlations also
satisfy

εBB
lj 0i =< (cB

lj − cB
j )(c

B
0i − cB

i ) >, ε
µ−
λ′ j µ

−
λi

l j 0i =< (c
µ−
λ′ j

l j − c
µ−
λ′ j

j )(c
µ−λi
0i − c

µ−λi
i ) > . (133)

The notations P mλi
0i and P

mλ′ j/ mλi

l j 0i indicate the probabilities of the static fluctuations of
the magnetization.

As an example, when we have a binary alloy, consisting of two sublattices, and two
types of atoms A and B, we obtain

PA
0i = xA −

ν2

ν
ηa (134)

for the first sublattice and
PA

0i = xA +
ν1

ν
ηa (135)

for the second sublattice, with
PB

0i = 1− PA
0i . (136)

Here, ν = ν1 + ν2 is the total number of sublattice sites, xA, and xB = 1 − xA are the
concentrations of the atomic components A and B in the alloy, and ηa is the parameter that
measures the long-range atomic order.

The two values mλi = µ+λi and µ−λi represent the projections of the localized magnetic
moment onto the z axis. The probability P mλi

0i is connected with the long-range magnetic
parameter ηm via the expressions

P
µ+
λi

0i = xµ+
λ
− ν2

ν
ηm (137)

for sublattice 1 and
P
µ+
λi

0i = xµ+
λ
+
ν1

ν
ηm (138)
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for sublattice 2, with

P
µ−λi
0i = 1− P

µ+
λi

0i . (139)

Here, xµ+
λ

and xµ−λ = 1− xµ+
λ

are equal to the relative number of lattice sites with

localized magnetic moment projections µ+λi and µ−λi, respectively.
For an ideally ordered crystal, the Green’s function in Equation (97) is:

G(ε) = limG̃(ε),σ(ε)→ 0, (140)

where the Green’s function G̃(ε) is given by Formulas (95) and (96). The energies of the
electrons and phonons of the crystal are determined from the equations for the poles of the
Green’s functions:

det‖εδii′δγγ′ − H̃iγ,i′γ′(k, ε)‖ = 0, (141)

det‖ ε
2

}2 Miδii′δαα′ − Φ̃iα,i′α′(k, ε)‖ = 0, (142)

where H̃iγ,i′γ′(k, ε), Φ̃iα,i′α′(k, ε) are given by Formulas (111) and (114).

6. Free Energy

The Gibbs free energy or, in other words, the thermodynamic potential of the system,
satisfies [27]:

Ω = −Θ ln Tr(e−H/Θ). (143)

The Hamiltonian H is defined in Equation (1). To perform the trace, we need to sum over
all of the band states, but we also need to take into account the disorder averaging. The latter
is commonly handled via a configurational average [26]. Using Formulas (50) and (144), we
represent the thermodynamic potential in the form:

Ω = 〈δΦ〉 −Θ Sc + Ω(0)
e + Ω(0)

ph + Ω′, (144)

where Ω(0)
e , Ω(0)

ph are the thermodynamic potentials for the electrons and the phonons in the
field of the ionic cores, respectively. Ω′ is the component of the thermodynamic potential
that is caused by the mutual scattering of electrons and phonons; it is defined by

Ω′ = −Θ ln〈< σ(1/Θ) >0〉, (145)

with σ given in Equation (50) for the interaction picture.
In addition, Sc = − < ln Pc > is the configurational entropy, where Pc denotes the

distribution function for atoms with a specific z-component of the magnetic moment on
a given lattice site. The angular brackets 〈. . .〉 denote the configurational averaging over
different disorder configurations for a given density of disorder.

Next, we use the “integration over the coupling constant” method to simplify the
results further. By replacing the interacting Hamiltonian Hint (defined in Equation (5))
by Hint(λ) = λHint, differentiating the expression for the piece of the thermodynamic po-
tential Ω′(λ) in Equation (146) with respect to λ and then integrating (with the boundary
conditions Ω′(0) = 0, Ω′(1) = Ω′), we obtain the following after a long derivation:

Ω′ = − 1
πνN Im

1∫
0

dλ
λ

∞∫
−∞

dε[ f (ε)×

×Tr
〈(

w(λ) + Σeph(ε, λ) + Σee(ε, λ)
)

Gaa+(ε, λ)
〉
+

+ 1
2 coth

(
ε

2Θ
)
Tr
〈
∆M−1(λ)GPP(ε, λ)+

+
(

∆Φ(λ) + Σphph(ε, λ)
)

Guu(ε, λ)
〉] . (146)
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The contribution to the thermodynamic potential from the electrons (in the field of the
ionic cores) is also simple to find. It is given by

Ω(0)
e = −Θ

∞∫
−∞

ln
(

1 + e(µe−ε)/Θ
)

g(0)e (ε) dε. (147)

Similarly, the contribution to the thermodynamic potential from the phonons (in the
field of the ionic cores) is given by

Ω(0)
ph = Θ

∞∫
−∞

ln
(

1− e−ε/Θ
)

g(0)ph (ε) dε. (148)

The values g(0)e (ε) and g(0)ph (ε) in Equations (148) and (149) are given by Formulas

(126)–(130), in which one should put: tλmλi0i = tλ0i = 0, G̃(ε) = G0(ε) (61)–(65).
Finally, the configurational entropy can be represented as [26]:

Sc = −


∑

λ,mλi ,ni
Pλmλi

ni ln Pλmλi
ni +

1
2 ∑

λ, mλi, ni
λ′, mλ′ j, l j
(ni) 6= (l j)

P
λmλiλ

′mλ′ j
nilj ln

P
λmλiλ

′mλ′ j
nilj

Pλmλi
ni P

λ′mλ′ j
l j

+ · · ·


(149)

Ultimately, we are interested in determining the Helmholz free energy, F, as a function
of the volume V,the temperature T, the number of electrons Ne, and the parameters of
interatomic and magnetic correlations (εn1i1n2i2 , η). The Helmholz free energy can be found
directly from the thermodynamic potential. Namely, it satisfies F = Ω + µe < Ne >. The
free energy per atom, can be approximated by [26]:

F = 〈δΦ〉 −ΘSc + Ωe + Ωph + µe < Z >, (150)

where Ωe and Ωph are given by Equations (148) and (149), but with g(0)e (ε), g(0)ph (ε) replaced
by ge(ε), gph(ε) (see Equations (126)–(130)).The values of the parameters of the interatomic
and magnetic correlations (εn1i1n2i2 , η) are found from the condition for the minimum free
energy F (151).

7. Electrical Conductivity

Assuming the system to be driven not too far from equilibrium, we are allowed
then to make use of the linear response formalism of Kubo for the electrical conductivity
tensor [33],

σαβ(ω) =

1/Θ∫
0

∞∫
0

eiωt−δt
〈

J̃β(0) J̃α(t + i}τ)
〉

dτdt. (151)

In this equation, Jα is the current operator along the α spatial direction. The real part
of the conductivity, called the optical conductivity, can then be represented in terms of the
imaginary part of the retarded response function, or equivalently as

Reσαβ(ω) =
i

2ω

[
G Jα Jβ

r (ω)− G Jα Jβ
a (ω)

]
, (152)
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in terms of the retarded and advanced response functions. The current operator is just the
number operator for the electrons, multiplied by their velocity and the electric charge, and
then summed over all states. It is compactly represented via

Jα(t) = e
∫

Ψ+(ξ, t)vαΨ(ξ, t)dξ, (153)

where Ψ+(ξ, t) and Ψ(ξ, t) are the field operators for the creation and annihilation of
electrons, respectively, να is the operator of the α component of the band velocity, and e is
the electron charge. The integration over ξ sums over all states.

To get the retarded response function on the real frequency axis, we must analytically
continue the thermal response functions. The thermal current–current response function is
defined to be

G Jα Jβ(τ, τ′) =
e2

NV1
∑

n1n2n3n4

vαn4n2 vβn3n1 G′′
(
n1τ
′, n2τ, n3τ

′, n4τ
)
, (154)

where V1 is the volume of the primitive unit cell, and the two-particle thermal Green’s
function is given by the following time-ordered expectation value:

G′′ (n1τ
′, n2τ, n3τ

′, n4τ) =

〈
Tτan1(τ

′)an2(τ)a+n2
(τ)a+n4

(τ)σ(
1
θ
)

〉〈
σ(

1
θ
)

〉−1
, (n = niγ). (155)

The two-particle Green’s function from Equation (156) is described by the diagram in
Figure 6.
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The numbers of Figure 6 correspond to point numbers, e.g., 1 corresponds to (n1i1γ1τ1).
Using the diagram technique for two-particle temperature Green’s function and ne-

glecting the contributions of scattering processes on clusters of three or more sites for the
conductivity tensor, we can get:
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Reσαβ(ω) = e2}
4πV1ε

{
∞∫
−∞

dε1[ f (ε1 + ε)− f (ε1)] ∑
s,s′=+,−

(2δss′ − 1)∑
γ,i

{
[vβK̃

(
εs

1, vα, εs′
1 + ε

)
]

+ ∑
λ,mλi

Pλmλi
0i K̃(ε1

s′ + ε, vβ, ε1
s)(tλmλi0i(ε1

s)K̃(ε1
s, vα, ε1

s′ + ε)tλmλi0i(ε1
s′ + ε)

+ ∑
λ,mλi

Pλmλi
0i ∑

l j 6= 0i,
λ′, mλ′ j

P
λ′mλ′ j/λmλi

l j 0i

[
[K̃(ε1

s′ + ε, vβ, ε1
s)vαG̃(ε1

s′ + ε) ]

×T(2)λmλi0i,λ′mλ′ j l j(ε1
s′ + ε)

+[K̃(ε1
s, vα, ε1

s′ + ε)vβG̃(ε1
s)]T(2)λ mλi0i,λ′mλ′ j l j(ε1

s)

+K̃(ε1
s′ + ε, vβ, ε1

s)
[
(tλ

′mλ′ j l j(ε1
s)K̃(ε1

s, vα, ε1
s′ + ε)tλmλi0i(ε1

s′ + ε)

+
(

tλmλi0i(ε1
s) + tλ

′mλ′ j l j(ε1
s)
)

K̃(ε1
s, vα, ε1

s′ + ε)T(2)λ mλi0i,λ′mλ′ j l j(ε1
s′ + ε)

+T(2)λ′mλ′ j l j,λmλi0i
(ε1

s)K̃(ε1
s, vα, ε1

s′ + ε)tλmλi0i(ε1
s′ + ε)

+T(2)λ′mλ′ j l j,λmλi0i
(ε1

s)K̃(ε1
s, vα, ε1

s′ + ε)T(2)λmλi0i,λ′mλ′ j l j(ε1
s′ + ε)

+ T(2)λ′mλ′ j l j,λmλi0i
(ε1

s)K̃(ε1
s, vα, ε1

s′ + ε)T(2)λ′mλ′ j l j,λmλi0i
(ε1

s′ + ε)
]]}0iγ,0iγ

+ 1
N

∞∫
−∞

∞∫
−∞

dε1dε2 f (ε1) f (ε2)∆GI I
αβ(ε1, ε2; ε)

}
,
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where
K̃
(
εs

1, vα, εs′
1 + ε

)
= G̃aa+(εs

1
)
vαG̃aa+

(
εs′

1 + ε
)

,

G̃aa+(ε+1 ) = G̃aa+
r (ε1),

G̃aa+(ε−1 ) = G̃aa+
a (ε1) =

(
G̃aa+

r

)∗
(ε1),

(157)

And the two-particle interaction term denoted by ∆GI I(ε1, ε2), is given by the equa-
tion:

∆GI I
αβ(ε1, ε2; ε) = i

2π vαn4n2 vβn3n1

{[
G̃aa+

rn1n6
(ε1) − G̃aa+

an1n6
(ε1)

]
×

×
[

G̃aa+
rn2n5

(ε2)− G̃aa+
an2n5

(ε2)
] [

G̃aa+
an7n4

(ε2 − ε) G̃aa+
rn8n3

(ε1 + ε)−

− G̃aa+
rn7n4

(ε2 − ε)G̃aa+
an8n3

(ε1 + ε)
]
+ G̃aa+

an1n6
(ε1 − ε)

[
G̃aa+

rn2n5
(ε2)− G̃aa+

an2n5
(ε2)

]
×

×G̃aa+
an7n4

(ε2 − ε)
[

G̃aa+
rn8n3

(ε1)− G̃aa+
an8n3

(ε1)
]
− G̃aa+

rn1n6
(ε1 − ε)×

×
[

G̃aa+
rn2n5

(ε2)− G̃aa+
an2n5

(ε2)
]

G̃aa+
rn7n4

(ε2 − ε)
[

G̃aa+
rn8n3

(ε1)− G̃aa+
an8n3

(ε1)
]
+

+
[

G̃aa+
an1n6

(ε1 − ε)G̃aa+
rn2n5

(ε2 + ε)− G̃aa+
rn1n6

(ε1 − ε)G̃aa+
an2n5

(ε2 + ε)
]
×

×
[

G̃aa+
rn7n4

(ε2)− G̃aa+
an7n4

(ε2)
] [

G̃aa+
rn8n3

(ε1)− G̃aa+
an8n3

(ε1)
]
+

+
[

G̃aa+
rn1n6

(ε1)− G̃aa+
an1n6

(ε1)
]

G̃aa+
rn2n5

(ε2 + ε)
[

G̃aa+
rn7n4
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an7n4

(ε2)
]

×G̃aa+
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[

G̃aa+
rn1n6
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(ε1)
]
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×
[
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rn7n4
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(ε2)
]
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(ε1 + ε)
}

Γ̃n6n7
n5n8 , (n = niγ)

(158)

Summation over repeated indices in expression (159) is implied.
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For the static conductivity tensor, we can get (ω→0):

σαβ = e2}
4πV1

{
∞∫
−∞

dε1
∂ f

∂ε1
∑

s,s′=+,−
(2δss′ − 1)∑

γ,i

{
[vβK̃

(
εs

1, vα, εs′
1

)
]

+ ∑
λ,mλi

Pλmλi
0i K̃(ε1

s′ , vβ, ε1
s)(tλmλi0i(ε1

s)K̃(ε1
s, vα, ε1

s′)tλmλi0i(ε1
s′)

+ ∑
λ,mλi

Pλmλi
0i ∑

l j 6= 0i,
λ′, mλ′ j

P
λ′mλ′ j/λmλi

l j 0i

[
[K̃(ε1

s′ , vβ, ε1
s)vαG̃(ε1

s′) ]

×T(2)λmλi0i,λ′mλ′ j l j(ε1
s′)

+[K̃(ε1
s, vα, ε1

s′)vβG̃(ε1
s)]T(2)λ mλi0i,λ′mλ′ j l j(ε1

s)

+K̃(ε1
s′ , vβ, ε1

s)
[
(tλ

′mλ′ j l j(ε1
s)K̃(ε1

s, vα, ε1
s′)tλmλi0i(ε1

s′)

+
(

tλmλi0i(ε1
s) + tλ

′mλ′ j l j(ε1
s)
)

K̃(ε1
s, vα, ε1

s′)T(2)λ mλi0i,λ′mλ′ j l j(ε1
s′)

+T(2)λ′mλ′ j l j,λmλi0i
(ε1

s)K̃(ε1
s, vα, ε1

s′)tλmλi0i(ε1
s′)

+T(2)λ′mλ′ j l j,λmλi0i
(ε1

s)K̃(ε1
s, vα, ε1

s′)T(2)λmλi0i,λ′mλ′ j l j(ε1
s′)

+ T(2)λ′mλ′ j l j,λmλi0i
(ε1

s)K̃(ε1
s, vα, ε1

s′)T(2)λ′mλ′ j l j,λmλi0i
(ε1

s′)
]]}0iγ,0iγ

}
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The electron velocity satisfies the conventional definition

vα(k) =
1
}

∂H(1)
0 (k)
∂kα

. (160)

When deriving expression (160), the last small term in the expression for electrical
conductivity (157) is neglected.

The method developed in this work was applied in [28] to study the effect of an
impurity on the energy spectrum and electrical conductivity of carbon nanotubes.

8. Energy Spectrum of Graphene with Adsorbed Potassium Atoms

To calculate the electron spectrum of graphene with adsorbed potassium atoms, we
chose the wave functions of the 2s and 2p states of neutral noninteracting carbon atoms as
the basis. In the calculation of the matrix elements of the Hamiltonian, we took three first
coordination spheres. The energy spectrum of graphene was calculated for the temperature
T = 0 K. In calculations, we neglect the renormalization of vertices of the mass operator
of the electron–electron interaction. The dependence of the energy of an electron on the
wave vector for graphene is calculated from the equation for Green’s function poles for the
electron subsystem, defined in Equation (142).

In Figure 7a, we show the dependence of the electron energy ε in graphene with
adsorbed potassium atoms on the wave vector k. Vector k is directed from the Brillouin
zone center (point Γ) to the Dirac point (point K).

In Figure 7, the structural periodic distance from a potassium atom to a carbon atom is
0.28 nm. It is seen from Figure 7 that, at the ordered arrangement of potassium atoms, a
gap in the energy spectrum of graphene arises. Its value depends on the concentration of
adsorbed potassium atoms, their location in the unit cell, and the distance to carbon atoms.
We established that, at the potassium concentration such that the unit cell includes two
carbon atoms and one potassium atom, the latter being placed on the graphene surface
above a carbon atom at a distance of 0.286 nm, the energy gap is ~0.25 eV (see Figure 7b).
A more complex dependence of the electron energy on the wave vector in the region of
the energy gap in comparison with that previously investigated in [34–36] in a simple
two-band model is due to the effect of band hybridization. The location of the Fermi
level in the energy spectrum depends on the potassium concentration and is in the energy
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interval −0.36 Ry ≤ εF ≤ Ry0.36. Such a situation is realized if graphene is placed on a
potassium support.
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9. Conclusions

A novel approach to the description of the electronic spectrum, the thermodynamic
potential, and the electrical conductivity of disordered crystals, based on the Hamiltonian
of electrons and phonons, constitutes the main issue of the present work. Expressions for
Green’s functions, thermodynamic potential, and electrical conductivity are derived using
the diagram method. Equations are obtained for the vertex parts of the mass operators of
electron–electron and electron–phonon interactions. A system of exact equations is obtained
for the spectrum of elementary excitations in a crystal. This makes it possible to perform
numerical calculations of the energy spectrum and the properties of the system with a
predetermined accuracy. In contrast to other approaches, in which electron correlations
are taken into account only in the limiting cases of an infinitely large and infinitesimal
electron density, in this method, electron correlations are described in the general case of
an arbitrary density.
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It was found that a gap appears in the energy spectrum of graphene with an ordered
arrangement of potassium atoms. Its value depends on the concentration of adsorbed
potassium atoms, their location in the unit cell, and the distance to carbon atoms. It
was found that at such a concentration of potassium, the unit cell includes two carbon
atoms and one potassium atom, the latter being located on the graphene surface above the
carbon atom at a distance of 0.286 nm, and the band gap is ~0.25 eV. Such a situation is
realized if graphene is placed on a potassium support. A more complex dependence of the
electron energy on the wave vector in the region of the energy gap in comparison with that
previously investigated in [34–36] in a simple two-band model is due to the effect of band
hybridization.
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