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Abstract. Orbits of coadjoint representations of classical compaegtoups
have a lot of applications. They appear in representatieorih geometrical
guantization, theory of magnetism, quantum optics etc. émsgtric objects
the orbits were the subject of much study. However, they nerhard for
calculation and application. We propose simple solutiamste following
problems: an explicit parameterization of the orbit by neeaha general-
ized stereographic projection, obtaining a Kahleriancitme on the orbit,
introducing basis two-forms for the cohomology group of dinleit.

1. Introduction

Orbits of coadjoint representations of semisimple Lie geare an extremely in-
teresting subject. These homogeneous spaces are flag ldanRemarkable, that
the coadjoint orbits of compact groups are Kahlerian méatgfon 1950s A. Borel,

R. Bott, J. L. Koszul, F. Hirzebruch et al. investigated thadjoint orbits as com-
plex homogeneous manifolds. It was proven that each coddjdiit of a compact
connected Lie groufs admits a canonicak-invariant complex structure and the
only (within homotopies)G-invariant Kéhlerian metrics. Furthermore, the coad-
joint orbits can be considered as fibre bundles whose bagdibass are coadjoint
orbits themselves.

Coadjoint orbits appear in many spheres of theoreticaliphy®r instance in rep-
resentation theory, geometrical quantization, theory afjnetism, quantum op-
tics. They serve as definitional domains in problems comugketith nonlinear

integrable equations (so called equations of soliton ty[@hce these equations
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have a wide application, the remarkable properties of @daidprbits interest not
only mathematicians but also physicists.

It should be pointed out that much of our material is, of ceurst new, but drawn
from various areas of the mathematical literature. The rizdteas collected for
solving the physical problem based on a classical Heisgrdmration witfSU(n)
as a gauge group. The equation describes a behavior of negwéh spins > 1.
The paper includes an investigation of geometrical andltgpcal properties of
the coadjoint orbits. We hope it fulfills a certain need. Weulddlike to men-
tion that we have added a number of new results (such as aitiexpbression
for a stereographic projection in the case of gr8li{3) and improving the way
of its computation, the idea of obtaining the Kahlerian ptt# on an orbit, an
introduction of basis two-forms for the cohomology ring afarbit).

The paper is organized as follows. In section 2 we recall tton of a coadjoint
orbit, propose a classification of the orbits, and deschieeotbit as a fibre bundle
over an orbit with an orbit as a fibre. Section 3 is devoted tereglized stere-
ographic projection from a Lie algebra onto its coadjoiriiprit gives a suitable
complex parameterization of the orbit. As an example, wemdaman explicit ex-
pression for the stereographic projection in the case aig$dJ(3). In section 4
we propose a way of obtaining Kahlerian structures and Kimepotentials on
the orbits. Section 5 concerns a structure of the cohomaiogyg of the orbits and
finding of G-invariant bases for the cohomology groups.

2. Coadjoint Orbits of Semisimple Lie Groups

We start with recalling the notion of a coadjoint orbit. k&be a compact semisim-
ple classical Lie groupy denote the corresponding Lie algebra, ghdienote the

dual space t@. Let T be the maximal torus df, andh be the maximal commuta-
tive subalgebra (also called a Cartan subalgebrg) skccordingly, h* denotes the

dual space t@.

Definition 1. The subse0,, = {Adj | Yg € G} of g* is called acoadjoint orbit
of G throughp € g*.

In the case of classical Lie groups we can use the standardsexgations for
adjoint and coadjoint operators:

AdgX =gXg', Xeg, Adju=g 'pg, peg"
Comparing these formulas one can easily seedttatadjoint orbit coincides with
an adjoint one
Define thestability subgroupat a pointi: € g* asG,, ={g€ G | Ady u=pu}. The
coadjoint operator induces a bijective correspondencedggt an orbit0,, and a
coset spaceés, \G (in the sequel, we deal with right coset spaces).
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First of all, we classify the coadjoint orbits of an arbiyrasemisimple group.
Obviously, each orbit is drawn from a unique point, which va# aninitial point
and denote byiy. The following theorem from [1] allows to restrict the regiof
search of an initial point.

Theorem (R. Bott). Each orbit of the coadjoint action @k intersectsh* precisely
in an orbit of the Weyl group.

In other words, each orbit is assigned to a finite non-empbgaiiofh*. For more
detail recall the notion of the Weyl group. L&t(H) be thenormalizerof a subset
HCGin G, thatisN(H) = {geH | g~'Hg = H}. LetC(H) be thecentralizer
of H, thatisC(H) = {g€ G | g~'hg =h, Yh € H}. Obviously,C(T) = T, where
T is the maximal torus ofs.

Definition 2. TheWeyl group of G is the factor-group ofV (T) overC(T):
W(G) = N(T)/C(T).

The Weyl groupW (G) acts transitively orh*. The action ofW(G) is performed
by the coadjoint operator. It is easy to show tié{G) is isomorphic to the finite
group generated by reflections,, across the hyperplanes orthogonal to simple

roots a:

wa(ﬂ) :,M—Q%Oé, JIRS h*>

where(-, -) denotes a bilinear form ogi*.

Definition 3. The open domain

C={peh*|{ua)>0 Yaec AT}
is called thepositive Weyl chamber. Here At denotes the set of positive roots.
We call the sef’, = {pn € b* | (i, ) = 0} awall of the Weyl chamber.

If we reflect the closur€’ of the positive Weyl chamber by elements of the Weyl
group we coveh* overall:

h* = U w-C.

weW(G)

An orbit of the Weyl groupW(G) is obtained by the action ¥ (G) on a point of
C. In the case of groupU|(3), two possible types of orbits of the Weyl group are
shown on the root diagram (see figure 1). Black points demtézsections of a
coadjoint orbit withh* and form an orbit oW (SU(3)). The positive Weyl chamber
is filled with grey color. It has two wallsI',, andIl',,; they are the hyperplanes
denoted byw,, andw,,. At the left, one can see a generic case, when an orbit
of W(SU(3)) has 6 elements. It happens if an initial point lies in therioteof
the positive Weyl chamber. At the right, there is a degereflan-generic) case,
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generic orbit positive degenerate orbit
Weyl
W W
¥ chamber y

Figure 1. Root diagram foSU(3).

when an orbit ofW(SU(3)) has 3 elements. It happens if an initial point belongs
to a wall of the positive Weyl chamber.

In the both cases the closed positive Weyl chamber contaimsgaie point of an
orbit of W(G). We obtain the following

Proposition 1. Each orbitO of G is uniquely defined by an initial pointy € h*,
which is located in the closed positive Weyl chamBelf 1 lies in the interior of
the positive Weyl chamberi, € C, it gives rise to ajeneric orhit. If ;o belongs to
a wall of the positive Weyl chambety € T, a € AT, it gives rise to alegenerate
orhit.

As mentioned above, one can define the ofjt through an initial poinfug € b*

by O,, =G, \G. Note, that a stability subgrou@, as . € h* generically coin-
cides with the maximal toru$'. However, ifu belongs to a degenerate orbit, then
G, is a lager subgroup ak containingT. Therefore, we define a generic orbit by

O = T\G,
and a degenerate one by
OHO = GHO\G7
whereG,, # T, G,, D T.

An important topological property of the coadjoint orbistie following. Almost
each orbit can be regarded as a fibre bundle over an orbit witloebit as a fibre,
except for the maximal degenerate orbitsdeed, if there exists an initial poipg
such thatG,, D T, one can form a coset spdt&G,,,. Thus, the orbi¥,,, = T\G
is a fibre bundle over the basg,,\G with the fibreT\G,,:

OHO = g(Guo\CU T\Guo ’ 77)7

wherer denotes a projection from the orbit onto the base. Moredvgy)\G and
T\G o are coadjoint orbits themselves. We claim this by
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Proposition 2. Suppos&),,, = G, \G is not the maximal degenerate orbit Gf
Then a subgroug such thatG D K D G, exists, and),, is a fibre bundle over
the basd<\G with the fibreG,, \K:

O = E(K\G, G, \K, 7).

We illustrate the proposition by examples.

Example 1. The groupSU(2) has the only type of orbits:
osue _SU@) | op1

U(1)
The groupSU(3) has generic and degenerate orbits:

osue _ _ SUB) OSU® SUB)  _cp2.

U(1) x U(1)’ ~ SU@2) x U(1)

Comparing the above coset spaces we see that a generiadiit) is a fibre
bundle over a degenerate ortt " with a fibreOSU(2:

OSV®) = (O} 0%V@ 1) = £(CP?,CPY, 7).

The groupSU(4) has several types of degenerate orbits. There is a list of all
possible types of orbits:

OSUM) _ SU(4) oSvM@) _ SU(4)
U(1) x U(1) x U(1)’ i SU(2) x U(1) x U(1)’
su@) SU(4) Su() _ SU4) ~
On " =smE @y OB~ suExom S

As a result, there exist several representations of a geagsit OSU(*) as a fibre
bundle. For example,

OSUM) _ 5(035(4)7 OSU(3)77T) _ 5(<CP3, OSU(3)77T)
OV = £(0h W, 050, 1) = £(0 Y, CP!, ).

Example 2. In the paper we consider compact classical Lie groups. Thsgribe
linear transformations of real, complex, and quaterni@paces. Respectively,
these groups ar8O(n) over the real fieldSU(n) over the complex field, and
Sp(n) over the quaternionic ring. Here we list the maximal tori lbfleese groups,
and their representations as fibre bundles.

n—1

The maximal torus ofU(n) is T = U(1) x U(1) x --- x U(1); the generic type
of orbits can be represented as

OSU(n) — E(CPn_l, OSU(n—1)7 7'(').
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The maximal torus o8O(n) asn = 2m andn = 2m + 1 has the following form
T =8S0(2) x SO(2) x --- x SO(2); the generic type of orbits can be represented

m

as
OSO(Qm) — g(GQn-Q, OSO(Qm—Q)’ﬂ_)
OSO(2m+1) — S(GZn—1;27 OSO(2m_1)77T)7

whereGay,.2, Gam—1;2 denote real Grassman manifolds.

n—1

The maximal torus o8p(n) isT = U(1) x U(1) x --- x U(1); the generic type
of orbits can be represented as

OSp(n) _ g(HPn_l, OSp(n—l)’ﬂ_)’

whereH denotes the quaternionic ring.

3. Complex Parameterization of Coadjoint Orbits

In the theory of Lie groups and Lie algebras different waypafameterization

of coadjoint orbits are available. As the most prevalent weose ggeneralized
stereographic projection [2]. It is named so since in the case of grasig(2) it
gives the well-known stereographic projection onto the jglem plane, which is
the only orbit of SU(2). The generalized stereographic projection is a projection
from a dual space onto a coadjoint orbit parameterized bypt®acoordinates.

Complex coordinates are introduced by the well-known pilace that combines
Iwasawa and Gauss-Bruhat decompositions. These coadiaaé often called
Bruhat coordinates [3].

We start with complexifying a grouf in the usual wayG® = exp{g + ig}. A
generic orbit ofG is defined inG® by Montgomery’s diffeomorphism:

O =T\G ~ P\GE, )
whereP denotes the minimal parabolic subgroupGt.

Equation (1) becomes apparent from the Iwasawa decompositt = NAK,
whereA ~ exp{ih} is the real abelian subgroup 6f, N is a nilpotent subgroup
of GC, andK is the maximal compact subgroup @f. Since we consider only
compact group$, K coincides withG. Then the Iwasawa decomposition f
has the following form

Gt = NAC.

It is easy to expresA andN in terms of root vectors. Leh™ be the set of positive
rootsa of G®. By X,,, X_,, a € AT, denote positive and negative root vectors,
respectively. ByH,, a € AT, denote the corresponding Cartan vectors, which
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form a basis for the Cartan subalgelra According to [4], we chooseX,, and
X_gsothatX, — X_,, i(Xqa+X_o) € g. Then

N ~ exp{ > naXa}, ng €C, A~ exp{ > aaiHa}, aq ER.
acAt acAt
In this notationP = NAT. This makes (1) evident.
In the case of a degenerate orbit, we have the following aifferphism:

Ouo = GMO\G = PMO\GCa 2
whereG,,, is the stability subgroup and,, is the parabolic subgroup with respect

to O,,. ThenP,, = NAG,,,, that proves (2).
On the other hand; admits a Gauss decomposition (for the generic type of rbits

GC =NTC7,

whereTC is the maximal torus of:¢, andT® = AT in the above notatioriy and
7 ~ N* are nilpotent subgroups @&* normalized byT®. In terms of the root
vectors introduced above

Z:exp{ > zaX_a}, zZo € C.

acAt
After [4] we call a,, na, z, the canonical coordinategonnected with the root
basis{H,, Xo, X_o | « € AT}. These are coordinates in the graip
A comparison of the Gauss and Iwasawa decompositions isihle the orbitO
is diffeomorphic to the subgroup manifakd
_NAG NATZ _ 3)
" NAT  NAT
Diffeomorphism (3) asserts that one can parameterize thie ©rin terms of the
complex coordinate$z,, « € A*} that are canonical coordinatesZn

However, a Gauss decomposition is local. Therefore, we Bauss-Bruhat de-
composition instead:

o

Gt= [ Pzw.
weW(G)

It gives a system of local charts on the orbit:
0=P\G*= () Zuw. (4)
weW(G)

In the case of a degenerate o, T is to be replaced b¢s,,,, andP by P, . It
is sufficient to take the intersection owere W(G,,)\W(G) in (4). Furthermore,
in this caseZ has a less number of coordinates.
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Proposition 3. Each orbitO of a compact semisimple Lie grodpis locally pa-
rameterized in terms of the canonical coordinates,, a € A*} in a nilpotent
subgroupZ of G€ according to(4).

Now we apply the above scheme to compact classical Lie grawgmselySO(n),
SU(n), Sp(n). The scheme consists of several steps. First we paranetbgz
subgroupsN, A, and the groug in terms of{z,, a« € A™}. Secondly, we choose
an initial point i in the positive closed Weyl chambér and generate an orbit
O,, by the dressing formula

=9 'y, geG.

That gives a parameterization on one of the charts covenagibit. Finally, we
extend the parameterization to all other charts by theadi@lements of the Weyl
group of G. We consider the scheme in detail.

Step 1 Being a finite group, each classical Lie group has a matpresentation.
Let & be the matrix representing an element An lwasawa decomposition of
z € 7 has the following form:

t=nak, NneN, acA, keG. (5)

One has to solve (5) in terms of the complex coordinatethat appear as entries
of the matrixz. The following transformation of (5) makes the computatasier

25* = hakk*a*n* = na’n’,

wherek* denotes the hermitian conjugateiofindeed kk* = ¢ for all of the men-
tioned groups. This is evident, if one considers the conjagaver the complex
field in the case o§U(n), and over the quaternionic ring in the casespfn). If

k € SO(n) one has:* = k7, and the equality:k* = e is obvious. Moreover, it
can easily be checked th@t* = a2. Whenn anda are parameterized in terms of
{24}, the matrixk(z) is computed by the formula

k(z) = a Y (2)a " (2)2.

Here we obtain complex parameterizationsNgfA, G for all classical compact
groups of small dimensions.

Example 3. In the case of grouU(n), the corresponding complexified group
is SL(n, C). The subgrouN consists of complex upper triangular matrices with
ones on the diagonal, the subgrdigonsists of complex low triangular matrices
with ones on the diagonal, the subgrofipcontains real diagonal matricés=
diag(ry, r9, ..., ry) such thaf [, r; = 1.
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Decomposition (5) for a generic ortf?SV(®) gets the form

1 00 1 ny ng\ (7 0 O
z1 1 0] =10 1 ny 0 0 |a, 4 € SU(3),
23221 00 1 007’2

whence it follows
ri =1+ |z + |23 — z120%, 15 =1+ |z + |23]°

(52 + 2123), ng = —.

= —5(z 1 2 — z = —
ni 74%(?«“1( + [22]%) — 2223), mo 2 2

The dressing matrix is

1 _z _Z3—Z1%
1, T1 T1

G = z1(1+|22|2)—23%2 14|23 —2120%38  Zp+2133
rire rire T1T2
z3 z2 4
T2 T2 T2

The case of a degenerate ormﬁU(?’) is derived from the above by assigning
z1 =0, 0rzo=0.

Example 4. In the case of groufp(n), the complexified group iSp(n,C). The
both groups describe linear transformations of the quieit vector spacéi”.
Therefore, it is suitable to operate with quaternions ex$tef complex numbers.
Each quaternioi is determined by two complex numbers z, asq = z1 + 29j.
The quaternionic conjugate qfis § = z; — jz, wherezy, z, are the complex
conjugates ofq, zo. Several useful relations are available:

jz = Zj, Zz+w=7ZzZ+w, Z-w=1w-Z,

wherez, w € C.

The subgroup®, Z have the same representatives as in the case of ¢oup),
but over the quaternionic ring. The subgradonsists of real diagonal matrices
with the same property as in the casesdf(n).

We start with the simplest grodip(2). Suppose, ¢ € H such that = n; + naj,

q = 21 + z2j, whereny, ny, 21, 20 € C. Decomposition (5) for an orbi®Sr(2)
gets the following form

@) =016 rese,

whence it followsr? = 1 + |q|2, v = §/r2, or in terms of complex coordinates:

21 22
T2 = |z1|2 + |Z2|27 ny = ﬁv ng = ——.



10 Julia Bernatska'*, Petro Holod*

The dressing matrix is
L 1 ( 1 —21 +j22)
p \/|Z1|2+|Z2|2 21+Z2j 1 ’

In the case of grouSp(3), we perform all computations in terms of quaternions.
Supposey; = z1+22j, G2 = 23+ 24), g3 = 25+ 26, V1 = N1 +N2j, v2 = n3+n4j,
v3 = n5 + ngj. Then, for a generic orbi®SP®), one obtains

1 00 Lo w3\ (7 0 0
g 1 0] =[01 v 0 0 |p, p € Sp(3),
g3 q2 1 00 1 0 0 ry

whence it follows

ri =1+ g+l — @al?, 3 =1+]|¢)+ gl

1, B 1, B q3
v = 5 (@1 + @) - Be), v2=—5(@+ad), vs=-5.
1 T2 T3

The dressing matrix is

1 _ Q1 _G3—q1q2
T T 1
b= q1(1+]g2?)—G293  1+|gs|>—q1d3q2 _ Go+q133
172 172 o)
a3 a2 1
T2 T2 T2

The case oSp(n) in terms of quaternions is very similar to the caseSof(n).
The only warning is that the multiplication of quaternioasibt commutative.

Example 5. In the case of groufO(n), the corresponding complexified group is
SO(n,C). Representatives of the subgrougsandZ have not so clear structure
as for groupsSU(n) andSp(n). The real abelian subgrouf consists of block-
diagonal matriceg = diag(A;, Ao, ..., A,,) in the case of groupO(2m), and

a = diag(Ay, Ag, ..., Anm, 1) in the case of groufO(2m + 1). Here

_ (cosha; —isinha;
' \isinha; cosha; /-

Consider the groufO(3). The only type of orbits i€5°() =S0(2)\SO(3). In
this case decomposition (5) gets the form

2 2 2 2

1_2? =z -2 = p cosha —isinha 0
L % _is | = % 1+ %2 —in | [isinha cosha 0] o,
z iz 1 -n in 1 0 0 1
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whereo € SO(3), anda, n, z are canonical coordinates in the group. One easily
computes the following

a 2
e =14 |z n =
1217 1+ |2]?
The dressing matrig is

2—22-32 1(22-2%) 4z

2(1+[2%)  2(1+[2]?) 1+[z]2
o — i(22-22) 2422432  i(z—22)

T 20+1=2P) 2(1+]2]%) 1+[z]2

z2+zZ i(Z—Z) 1—|z 2

1+]2]? 1+]2]? 1+z]?

We return to the scheme.

Step 2 Suppose we have some parameterization of the dual gpatethe al-
gebrag of a groupG. We call these parameters group coordinates. In order to
parameterize an orbit @k we find expressions for the group coordinates in terms
of the complex coordinatels:,,, « € A™}. Continue the example of groiJ(3).
Let\,, a = 1..8, be Gell-Mann matrices, then, = —%)\a, a = 1..8, form a basis

for g*. Define a bilinear form og* as(A, B) = —2Tr AB. Each basis element
Y, is assigned to a group coordinaje; = (i, Y, ), where

3t s g —ipe pa—ips
N 1 . 1 .
p=—5| mtipe —ps+ mps pe —1p7
patips  pe i —Jops
A coadjoint orbit is generated by the dressing formula:
fi=@fio, o € 1",
wherefig is an initial point. As shown in section 2, each orbit is urilyudefined
by a point of the closed positive Weyl chamber. Let simpletsarf su(3) be as

follows: &; = diag(i, —i,0) andae = diag(0,i,—i). The closed positive Weyl
chamber is the set of poinfg such that

; 2 0 0 ; 10 0
o=-zclo -1 0 )-znlot 0}, >0 ()
0 0 -1 00 -2

Obviously, walls of the Weyl chamber are obtained by asaigéi= 0 orn = 0. In
this notationl',, = {—1indiag(1,1,-2) [ n > 0}, Ta, = {—2& diag(2, -1, -1) |
¢ > 0}. The chosen representation of an initial pgigtis the most suitable for the
further computation.

According to Proposition 1 we get a generic orbiyit£ 0 and¢ # 0. If £ orn
vanishes, we get a degenerate one. A generic orbit is pazamezt by three com-
plex coordinates, 29, z3. If £ vanishes, one has to assign=0. If n vanishes,
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thenz, = 0. We consider the degenerate orbit through the followingpoi

. (100
fo=—gn{01 0 |.
00 —2

One can attach some physical meaning to nonzero entriee ofittal point iy be-
cause of its diagonal form. For in quantum mechanics didgoagices represent
observable variables. Suppgsgis the value of: at the infinity: ip = fi(c0). The
diagonal entries are expressed in terms of the group caieding andug; we fix
their values at the infinityus(co) = m, ug(co) = ¢. Then

n:—%(m—\/gQ), §=m.

Suppose the groupU(3) describes a magnetic with spin 1. Thenserves as a
projection of magnetic moment (magnetization) of the mégnandq serves as a
projection of quadrupole moment.

The dressing procedure gives the following explicit expi@s for the generalized
stereographic projection onto a generic orbisf(3):

_ _ § .
1 = _%(zzzg + 2223) - —2(21 + Zl)
ry 1
in,_ _ i£ _
o = —2(2223—2223)+_2(Zl _Zl)
Ty 1
n §
Hn3 = —2(’22’2—‘23’2)"‘_2(1_’21‘2)
Ty 1
= M) - & 73 — 217
pa = _ﬁ(z’?, + 23) — F(ZS — 22+ 23— D7)
i; ig v
s = —2(z3 —Zz3) + —2(23 — 2120 — (73 — Z122))
T2 7/.1

_ £ L
pe = — d (22 + 22) + ﬁ(m(zg — 2129) + 21(23 — Z122))
1

Wy = (20 — Z2) — 2(51(733 —z129) — 21(Z3 — Z122))

in 1§
2
T3 1

n £
\/g,ug = p(Q — |Z2|2 — |23|2) + p(l + |21|2 — 2|Z3 — Z1Z2|2),
2 1
where

T’%:1+|21|2+|Z3—21Z2|2, T‘%: 1+|22|2+|23|2.

Obviously, all expressions can be divided into two partsthwthe coefficients,
and¢. These parts correspond to the basis matrices in (6).
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For the stereographic projection onto a degenerate omitigin ;1o chosen above
one has to assigh= 0, z; = 0in (7).

Step 3 Parameterization (7) is available on the coordinate at@mtaining the
point (z; = 0, zo = 0, z3 = 0). By the action of elements of the Weyl group
one obtains parameterizations on all other charts. The Wfeylp is generated by
reflections across the hyperplanes orthogonal to simpks.romthe case of group
SU(3), these reflections are represented by the following matrice

01 0 ~100
wi=(10 0], ds=[001].
00 —1 010

The action ofi; transforms the chart with coordinates (7) onto another griad
following change of coordinates:
1
(21,22, 23) — (21, 25, 2%), 2 = ot 2y = —23, 25 = —29.
This chart contains the poirlt; = oo, 23 = 0, z3 = 0). The action ofw,
transforms coordinates (7) by the following change of cowts:
1 z3

(21,22, 23) — (2], 25, 2%), 2y = —(23 — 2122), 2= —, 24 = .
29 Z2

The latter chart contains the poift; = 0, 2o = o0, z3 = 0).

Evidently, the other elements &V(SU(3)) areé, wyws, ey, Wiewy. The
corresponding changes of coordinates are obtained by s&gjuactions of the
two described above.

4. Kéhlerian Structure on Coadjoint Orbits

The perfect property of coadjoint orbits of compact semigarLie groups is the
following. Each orbit is simultaneously a Riemannian maldifand a symplectic
one. A Riemanian metrics and the matched symplectic forrattmy are called a
Kéahlerian structure . A. Borel [5] proved the following

Proposition 4. Supposdz is a semisimple compact Lie group. Then each orbit
of G admits a complex analytic K&hlerian structure invarianden the groupG.

It means that each orbit possesses a hermitian Riemannigitsnéhe Kahlerian
metricsds?, and the corresponding closed two-form, Kéhlerian form w:

ds? = Zgaﬁ-dzadgﬁ, w = Zigaﬁ_ dze A dZs.
. o,
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The G-invariance of a Kahlerian structure means invariance uthggeaction ofG.
Here we consider the action of a group as right multiplicatid Kahlerian struc-
ture is determined by Kéahlerian potential ® according to the formula

9*d

9aB — ma WaB = igaﬁ_'

The objective of this section is to obtain an expression f&@hlerian structure
on a coadjoint orbit. Evidently, for this purpose it is suffitt to find a Kahle-
rian potential, which simultaneously gives the Kahleriagtimas and the Kahlerian
form.

On the other hand, one has the following

Proposition 5 (see [6]) If G is a compact semisimple Lie group, the Kirillov-
Kostant-Souriau two-form coincides withGainvariant Kéhlerian form.

While we deal with compact semisimple classical Lie growgscan use a Kirillov-
Kostant-Souriau differential form as a Kahlerian form.

Define a bilinear form ory as follows:
(X,Y) =Tr XY, X, Y eg.
In the case of classical Lie groups, the bilinear form is prépnal to the standard
Killing form on g.
Define a vector field{ on a coadjoint orbitO by

Xf) = & (Al m)| . TEC™(0).
One can introduce aﬁd—lnvanant closed two-form o9 by the formula
w(X,Y)=(n,[X,Y]), X, Yeg peg’ ®)

This two-form is called &irillov-Kostant-Souriau form .

The straightforward way of obtaining a Kahlerian form is tdve equations (8).
Unfortunately, it becomes extremely complicate in dimensigreater than 3. This
way is developed by R. F. Picken in [3]. He computes Kahleftams on flag
manifolds viaG-invariant one-forms in terms of Bruhat coordinates.

We return to the idea of finding a Kahlerian potential insted Kéhlerian form.

In general, eaclks-covariant real function on an orbit serves as a Kahleriaerpo
tial. It turns out, that each orbit has a uniquecovariant real function, which we
call aKahlerian potential on the orbit.

The same idea is used by D. V. Alekseevsky and A. M. Perelom@x]i In order
to find potentials for all closed two-forms on orbits of gradp.(n), they consider
the real positive functions built by means of principal mof 22* € GL(n), and
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select the functions that afe-covariant. Here we develop the idea of D. V. Alek-
seevsky and A. M. Perelomov, because this way allows to axaidplicate com-
putations.

Below we prove that a Kahlerian potential is determined byna-dimensional
irreducible representation of the real abelian subgréud GC. We use the group-
theoretical approach in our proof.

Each orbit® = P\G(C is a holomorphic manifold, which admits the construction
of a line bundle. Le{U}} be its atlas. An arbitraryc € G® has a decomposition

gc = hi(x)si(z), z € Uy, 9)

wheresy, : U, — GC is alocal section of. If UrNU; # 0, then there exists a map
Skj = 5 © sj_l, whichiss;; : U, NU; — P. A one-dimensional representation of
the parabolic subgroup of GC gives aG-covariant function on an orbit.

Recall, thatP = NAT in the case of a generic orbit. In the case of a degenerate
orbit, one ha® = NAG,,, whereG,,, is the stability subgroup at an initial point
1o € b* giving rise to the orbit. A one-dimensional irreducible regentation is
trivial on any nilpotent group. This means that the repreg@n of P coincides
with the representation of the maximal torli§ = AT of G. Moreover, we are
interested in real representations because a Kahleri@migltis a real function.
Consequently, the required representation is determingchy A.

Now we build a one-dimensional irreducible representatdéri’. Obviously,
TC is isomorphic to a direct product df samples of the multiplicative group
C* = C\{0}, wherel= dim T. Let the following set of complex numbe(d;,

da, ..., d;) be animage offl € TC under the isomorphism. It is clear that the set
of real numbergry, o, ..., 1), wherer; = |d;|, i=1..1, is an image ofi € A
under the isomorphism. In terms of complex coordinates {z, | a € A*},
which are canonical coordinates i) an lwasawa decomposition of agye Z
gets the form

2 =n(2)a(2)k(2). (10)

Herek(z) represents a point of an orbit in terms of the complex coateis z,, };
n(z) anda(z) denote matrices anda in terms of{z,}. After the action of an
elementy € G on z we perform a Gauss-Bruhat decomposition:

A

29 = np(29)d(29)25,  np(zg9) € N. (11)
From the lwasawa decomposition Bf we have
a(zg) = 17N (zg) 29k (29)
Using (10) and (11) we get
i(zg) = 1! (29)d ™" (29) 5" (29)2(2)a(2)k(2)9k ™" (2). (12)
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In order to gather nilpotent elements together we recallttteemaximal torus'©
is the normalizer oN, that gives the following equality

d'(zg)n 5" (29)0(2)d(2g) = Az, 9),  (z,9) €N,
Substitutingii g (zg)d " (zg) for d=1(zg)i 5" (z9)7(z) in (12) we obtain

i(zg) = 0 (z9)A(z, 9)d " (29)a(2)k(2)gh™" ().
To cancel the elemerit(2) gk~ (z,) = § € G we take the following product
0%(2) = a(2)a" (29) = ™" (29)a* (2)d" " (2g)0", (13)
wheren denotesi ! (z,)n(z, g) € N.
Now we construct a one-dimensional real representatiof3)f (etx*(a) denote
a representation af with real weightst = (&1, &, ..., §). A one-dimensional
real representation afc A has the following formyé(a) =5'75>--- 7%, and a
one-dimensional real representationiaf T has the formy¢ (d) = d5'd5? - - - dfl.
Therefore, the representationdf{z,) gets the form

X (a(zg)) = x*(d(29))x¢ (d(29)) x> (a(2)).

Whence it is seen tha{? (a(z)) is transformed by a cocyclg® (d(zg)) defined
onG x O. It means that the function

In v % (a(2)) = & Inri(2) + & Inr3(2) + -+ & Inrf(2) (14)
is G-covariant, and serves as a Kahlerian potentiaboiMoreover, each function
Inr2(2),i=1..1, is a Kahlerian potential itself.

Remarkably, that each coadjoint orbit has a unique Kéamgy@ential of the form

(14), where the weight$ = (&1, &9, ..., &) are determined by an initial point of
the orbit. We have proven the following

Proposition 6. Suppose\ is the real abelian subgroup @, a € A, andx*(a)
is a one-dimensional representation @fvith real weightst = (&1, &, ..., &).
Then Kahlerian potentials on coadjoint orbits@fhave the formn % (a), more-
over each orbit has the Kahlerian potential with a unique

Remark 1. In the case of integer weights = (1, &9, ..., &), the line bundle
over each coadjoint orbit af is holomorphic. This idea is derived from the Borel-
Weyl theory based dig].

Consider several examples.

Example 6. In the case of groupU(n), a representative of the real abelian sub-
groupA has the form of a diagonal matrix wittet a = 1, that is

a = diag(1/ry, r1/ray ..y Pn—2/Tn—1, Tn—1),
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anddimT=n—1. Let (ry, ro, ..., r,—1) be an image ofi under an isomor-
phism fromTC onto (C*)"~!. Thenx$(a) = r$'r52---rS"7', whereg; € R,

i=1..(n—1), whence Ké&hlerian potentials have the following form:
d=&Inrf+&nri -+ & Inr? .
For instance, Kéhlerian potentials on orbitsSaf(3) are
d = ﬁlnr% —|—771nr§
2 =14 |21)? + |23 — 2122]%, r2 =1+ |z|? + |2/

This expression completely accords with the straightfodwslution of (8), which
gives the following:

® = (fig, 61)P1 + (fig, Gr2) P
Oy =In(1+ |21 ]2+ |23 — 2122/%), Dy = In(1 + |22 + |23]%),

herejig is an initial point of an orbitéy, & are the simple roots afu(3). In the
case of a degenerate orbit, one has to assiga 0 or z, = 0.

Example 7. In the case of groupSO(n), n = 2m andn = 2m + 1, a representa-
tive of the subgroup\ has the form of a block-diagonal matrix, namely

a = diag(Ay, Ao,y ..., Ap) ~_ (cosha; —isinha;\ . 1
ora = diag(Ay, Ag, ..., Ay, 1)’ ' \isinha; cosha; /)’ b= e

Here{a;} are canonical coordinates in the maximal tofysanddim T = m. Let
(e™, e®, ..., e*) be an image of under an isomorphism froM® onto (C*)™.
Thenyé(a) = ef1@1e8292 ... ofmam whence it follows

® =2¢1a1 + 260a + - - + 26 am,.
K&hlerian potentials on coadjoint orbits ©0(4) computed by (8) have the form
O = (fig, &1)P1 + (f0, G2) P2
1 =In(1+ [21]*) —In(L + |22?), @2 =In(1 + [21]*) +In(1 + |22]?).
Here the bilinear form omo(4) is defined by(4, B) = 1 Tr AB.

Proposition 7. The Kahlerian potential on each coadjoint orli),, of a compact
classical Lie groupG has the following form

(I):Z<M0,C¥k>q>k, (I)k = Qqy,,
k

whereqy, is a simple root ofy, anda,, is the canonical coordinate corresponding
to H,, €h, and(-,-) denotes a bilinear form on the dual spacegto
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Remark 2. If g satisfies thenteger condition

<N07 ak>
(o, ag)
then the orbit throughuy can be quantized. In other words, there exists an irre-

ducible unitary representation @k in the space of holomorphic sections on the
orbit. Each section serves as a quantum state.

2

€7,

5. Cohomology Rings of Coadjoint Orbits

In the last section we examine the cohomology rings of caatubits of compact
semisimple Lie groups. A. Borel [9] proved that all forms afdodegrees on the
orbit are precise. Therefore, we are interested in the fafreven degrees. In
order to introduce a basis for the cohomology ring it is sigfitto find a basis for
the cohomology groupi?.

In the case of a generic coadjoint orbit of a compact semigirhjge groupG, the
following formula is available

Wb 4 402 = ord W(Q),

whereb* denotes the Betti number of a cohomology grdiip. In the case of a
degenerate orbit, one has to modify the formula as

ord W(G)

bO b2 L. b2m e WYAM
ToAee ord W(G,,,)’

whereG,,, is the stability subgroup aty.

Example 8. In the case of groufU(2), we have the only type of orbitg9SU(2)
of dimension 2. The Weyl group/(SU(2)) also has dimension 2. Therefore, the
cohomology ring consists of two cohomology groups, eachrokedsion 1:

H*=H® H?, 1+1=2.

In the case of groupU(3), we have two types of orbits: a generic afeV®) of

dimension 6, and a degenerate @ﬁeU(g) of dimension 4. In the case of a generic
orbit, the Weyl group has dimension 6, and the cohomology isn

H* =H e H*>® H* 3 HS, 14+2+24+1=6.
For a degenerate orbit we hay§ C{NV(VC(;G#)) — 3, and the cohomology ring is
0
H =H® H*> 9 H*, 1+1+1=3.

Recall the well-known Leray-Hirsch theorem.
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Theorem (Leray-Hirsch) Supposef is a fibre bundle over a bas#1 with a fi-
bre 7, andwy, wo, ...w, are cohomology classes @hthat being restricted to
each fibre give its cohomologies. Then

H*(E) = H* (M) ® H*(F).

Apply the theorem to an orbi® regarded as a fibre bundle over an o®it with
an orbitO, as a fibre, that i© = £(0;, O3, 7). The cohomology ring 0D is a
tensor product of the cohomology rings of the base and the fibe

H*(0) = H*(01) ® H*(O2).
Conversely, if one finds coherent cohomology classe®prand O,, then one
can construct the cohomology ring 6f by the latter formula. It means, the co-

homology ring of a generic orbit can be deriven from the coblmgy rings of a
degenerate orbit and a generic orbit of a group of less diloens

Example 9. We continue to deal with the grofdJ(3). It was shown that
OSUB) _ E(OSU(?’), OSU(Z)JT).

Then the cohomology ring @5U®) is the tensor product of the cohomology rings
of the orbits0; " and SV ()

H*(oSU(?))) — (HO D H2 D H4) ® (HO D H2) —_
—H oH oH ' 9H*oH*9H o H> 9 H> ® H* 9 H' 9 H* @ H?.
H2((/)SU(3)) H4((/)SU(3))

Obviously, the cohomology grougg? and H* of ©SY() both have dimension 2.
Moreover, from the previous expression we can see the stauof a basis fof7?:

(030 = HO(1) © H*(2) ® H2(1) ® H(2),
where 1 denote@sU(?’) ~ CP2?, and 2 denote®SV(2) ~ CP!.
At the same time, a suitable basis #6f can be obtained from Kéhlerian potentials

on coadjoint orbits of a group. As shown in the previous sectall two-forms on
the orbits of a compact classical Lie groGphave the form
0?d,

w:zk:ickz;azaazﬁdza/\dzﬁ, k=1,...,dimT,

where®;, coincides with the canonical coordinatg, corresponding tdd,, €.
Obviously,dim H?> = dimT = [. Consequently, one can find precisélywo-
forms that give a basis faif 2.
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The standard way to generate a basis bt is the following. LetH, be the
homology group adjoint té12. By [y] we denote a class of two-cycles, which can
be represented as spheres. The sphere is an orbit of a spl&jrg2):

SUL(2) ~ exp{Hqy, (X0 — X_0a),i(Xa+X_0a)}, a€AL.

Suppose we find independent two-cycles connected with the simple roots, of
we denote them by;. The basis foir/* consists of two-formsy; such that

/ wj = b;5, (15)
Vi

whered;; is the Croneker symbol.

Example 10. We consider coadjoint orbits &fU(3) as an example. Let simple
roots ofsu(3) be as follows:a; = diag(i, —i,0) andas = diag(0,i,—i). Then
independent two-cycles are generated by the followingsitigamatrices

1 —21
\/1+\21|2 \/141|21\2 0 1 0 0
21

R . 0 1 —Z9
U1 0 Up = TH|z2)2 /14222
Vitz?2 14z ’ 0 v 2 v 1 ’
0 0 1 Vitz22 (/1422

which are obtained from the dressing matfixby assigningze = z3 = 0 or
21 = z3 = 0, respectively. The two-forms; satisfying (15) are
1 9*®;

o dzg Ndzg, j=1,2
“iT on £ 02407 Fa N GEG T =

Oy =In(1+ [21]*+ |23 — z122)%), P2 =1In(1 + |22 + |23)?).

They form a basis foFf2(0OSU()),

6. Conclusion

In this paper we develop a unified approach to solutions cdtiiunced problems
for a coadjoint orbit of a compact semisimple classical Liigup G. The problems
are the following: an explicit parameterization of the grbbtaining a Kéahlerian
structure, introducing basis forms for the cohomology grofi the orbit. The
key role belongs to the subgroupin an Iwasawa decomposition, this is the real
abelian subgroup of a complexification of the graapThe subgroup\ determines

a Kahlerian potential on each orbit and a suitable basish®cohomology group
H? of the orbit.

Our investigation concerns classical (matrix) Lie group$ie same problems in
the general case remain of current importance.
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