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Prokopets G. O.

TIME ANALYSIS OF THE NUCLEAR RESONANCE
SCATTERING OF NEUTRONS

The time evolution conception was applied to study of the neutron-nucleus resonance scattering. The
time delay probability density function of this process was calculated The calculation procedure that
takes into account the resonance statistics and the experimental based resonance spaces and widths has
been developed. The nucleus **Ni target has been examined as a tvpical example. The time parameters
of the intermediate nuclear svstem have been estimated for the backward scattering. The influence of
the statistical assumptions on the time calculations result is discussed. It is shown that the effects of the
incomplete equilibration of the intermediate nuclear system depend on these statistical assumptions.

1. Introduction

The problem we plan to consider here concerns
specific aspects of the time evolution in the course
of nentron-nucleus interaction. It is a part of long-
standing problem of the collision theory [1] that has
been studied for vears mainly theoretically [2-4].
One of the fruitful approaches to the time analysis
of nuclear reactions 1s associated with the Ericson
theory [2]. The Ericson theory is applied to the
exponential decay of an mmtermediate nuclear sys-
tem 1n the state of a complete statistical equilibn-
um. It permits to extract the mean hifetime values
from the fluctuating cross section energy autocor-
relation functions as T = #/y, where v 1s the cor-
relation width. The current theoretical progress of
the question was achieved in [3], [6]. Here we have
the mtention to survey the time behavior of the de-
caving nuclear systems under comparatively low
excitations where resonances with only a few dif-
ferent (J, mt) values exist. The sitnation of this kind
particularly takes place when the neutron scatter-
ing on the middle weight nuclei in the region of rel-
ative movement energy around 0,1 < £ <1 MeV is
examined. . The specific question to be studied in
this paper is the character of the time evolution
when resonance neutron scattering by the *¥Ni
nuclei takes place. There is no the experimental
method to measure directly the distribution of as
small nuclear reaction time delays as ¢ < 10717,
Therefore it would be useful to develop the relia-
ble model to calculate such kind of distribution.
The developed model makes use of the resonance
parameters and the level density parameters that
have been taken from the RIPL-2 Reference Input
Parameter Library [7]. The special regard was giv-
en to study of the influence of the model statistical
assumptions on the results of calculations.
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2, Calculation approach
in the time dependent formalism

In the time dependent description of the nucle-
ar reaction course one studies the movement of the
wave packets with imtial spread in energy AE around
the average energy £ of the incoming channel.

The collision time moment is fixed with the
precision Aty =h/AE. If the energy width AE is
large enough it is possible to determine the time
interval ¢ > Aty via which the particles appear in the
outgoing channel under the scattering angle ¢ and
the probability density function Py(t. 0). It allows
in particular the calculation of the average delav
time of the nuclear reaction

<f ;;(9)>f = _[ P, (t,8)dt (1)
and the corresponding dispersion
Dt @={1t,40F ) ~(t,)7, @
where
(11, @0 = [P, (1,00 3)

As was shown in [2, 3] the probability density
function P,{(z, 8) may be connected to the statisti-
cal attributes of the stationary reaction amplitude
J#(E, 8} 1n the energy mterval AE via Fourier trans-
form. Thus if the energy autocorrelation function
of the amplitude is defined as,

FHE0) 1 (E—¢€,0)
{ ) ac
(ruceof)
AE

then the following relations take place:

s
Pyl 0)=~— i ¢,,(€.8)expl—iet / )de.  (5)

¢, (e0)= (4)
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¢, (,0)= J P, (r,0)exp(ier / R)dt. (6)
Here € denotes ;10:6 energy shift and the symbol
( ) ap designates the averaging in the energy inter-
Val AE = (E]TI.'!X _Emin )‘
On the other hand the Ps(?, ) may be found
via the time power spectrum S;(¢, 9) of the colli-

sion:

Po,0y=—2 L %
j S0, 0)dr
Fmax 2
J’ F(E.®)exp(—iEt] h)dE|
S, (1,9) =20 L (8)

2rh{ E max— £ min)

3. The model amplitude for the scattering of
resonance neutrons by the ®Ni nuclei

The details of the nuclear scattering evolution
might be obtained on the basis of equations (4-8).
Of course, thev are useful only if the scattering
amplitude f,, (E.0) is known. Then the time prob-
ability density function P, (r,0) or the energy an-
tocorrelation function ¢, (€.6) would be found in
a direct way. In the statistical sense this gives the
complete time description of the scattering proc-
ess.

Keepimg in mind the main mterest to the analy-
s1s of the delayed time process we will be concen-
trated on the backward (8= 7) scattering. Here the
mstant scattering component is expected to be rel-
atively small.

To clear up the situation with the time picture
of the neutron backward scattering by >*Ni the nu-
cler we utilized the computational model of the res-
onance scattering. The model amplitude construc-
tion takes into account that under nentron energies
£ =500-800 keV for this target nucleus only s-
and p- orbital waves contribute significantly and
only total angular moments

PNy
27272
are present as far as target nucleus has zero spin.
It is known that the channel of nentron elastic scat-
tering by nuclei **N7 prevails for the energies un-
der consideration. Consequently the small contri-
bution of the other open channels (namely the ra-
diative capture) was ignored. Then the backward
scattering amplitude can be written as follows:

Jon(E, )= 2 (E)

X (fl,fz*,o(E) - flfz-,l(E) - 21;.-‘?.1(‘5))’

X

(9)

where the addends j':,a, ;(E) are defined as

N T
F (By=expl2i Y 80 (EV+ & (E)]-L. (10)
n=1

Here the resonance phases are given by

8. (F)=arcte[—1. 11
e, BV =aresl ),
where the terms EJ“ and Fﬂ stand for the

position and the width of the nth ‘resonance with
appropriate J” value.

The potential scattering phases were accepted
to be in accordance with [8]:

gO(E):_kﬂ(E)R (12)
. 1 .1 2k(E)R
E(E)= A,,(E)R+2arcsm L+ [ (ERE (13)

where the radial parameter for the nucleus with
the mass number 4 is given by _R:F'OAI::S and
fp=11-12 fm.

It was assumed that the energy points E n, Ol
the averaging interval AE are distributed random-
ly. More precisely, it is the spacings between neigh-
bouring resonances D .  with the mean level spa-
cing D , that obey the Wigner distribution. In ad-
dition t‘fle caleulations have been carried out when
all the resonances of the same spin-parity J" had
the identical value D ;.

As to the resonance widths rJnA,, several ap-
proaches to calculate the scattering amplitnde were
adopted too. The first one supposed the Porter-
Thomas distribution of the resonance widths with
the mean values I';x (the chi-squared distribution
with one degree of freedom). The second one was
the chi-squared distribution with three degrees of
freedom. And the last approach supposed that all
the resonances of the same spin-parity J" have the
identical value T ;.

To be defined in such a way the scattering
amplhitude f, (E,®) is the random function of £
Now the randomizing procedure makes it possible
to reproduce the resonance structure on the ener-
gy interval AE=FE,_  —F_. 1if the mean reso-
nance parameters D . and T, are given. Any
realization of this procedure may be taken as the rep-
resentative of the real behaviour of the scattering am-
plitude. A better approximation will be obtained from
some kind of averaging on a number of realizations.
Of course, it is true only if the mean resonance pa-
rameters correspond to the experimental data.

The necessarv data were taken from the RIPL-
2 Library [7]. Table 1 lists the main values from
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the RIPL-2 Library that have been used to find mean
resonance parameters D 2 and T S for the target
nuclens **Ni around mean neutron energy {E}=
=650 keV.

Table 1. The main values from the RIPL-2 Library for

the target nucleus *Ni
B, p A o D! 5 5

eV Mev) | M) | V) | eV | a0 (1079
£.999 [5.075£0.04 [-1.797 10,015 13,4 £0.9 [4.46 20,27 | 326 20,59 |14 £ 0.5

The listed values are as follows: D° and D' are
the mean level spacings for s- and p-wave neutrons,
respectively; Sy and S are the s- and p-wave neun-
tron strength functions. These values are applied
to the compound nucleus *’Ni with the excitation
energy of U, = B,, where B, is the neutron sepa-
ration energy for this compound nucleus. The val-
nes @ and A are the level density parameter and the
excitation energy shift for the Back-shifted Fermi
Gas (BSFG) model.

Really we need to know the mean resonance
parameters D . and T S for the compound nucle-
us **Ni with the excitation energy

U({E)=B,+(E). (14)

However the data of the table 1 refer to the
excitation energy U, = B,. But the necessary val-
ues of D . can be readily obtained from the data
of the table 1 by using the level density formula of
the BSFG model. The necessary values of T’  cau
be obtained in a sunilar way on the assumption of
the definition of the neutron strength function. In
addition the interrelation of the neutron widths with
the reduced neutron widths of resonances must be
nsed.

As aresult the following mean valnes were nsed
in the scatiering amplitnde calculation

D, =D, =9.7keV, D, =48keV

(15)

I, =35keV, I, =0.6keV, I, =03keV.(16)
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Now we are ready to use the time dependent
formalism of the division 2 m the model calcula-
tions of the time probability density function P, (z, )
from equations (7) and (8). Really we mtend to cal-
culate only the time probability density function
By (8, 7) comy for the delayed scattering events. The-
reafter we have use in the equation (8) the scatter-
ing amplitude for the events that take place with
the creation of the composite nuclear system:

fnn(Ean)comp :fnn(Ean)_'(.f;m(E?n))AE? (17)

E,

where < f,, (E, 1) >,z= j f(E,m)dE | AE
E

min

is the energy averaged amplitude in the interval
AE = Emax - Emin-

4. The analysis of the time probability
density function for the delayed backward
scattering of resonance neutrons
by the *®*Ni nuclei

To make nse of the time dependent formalism,
presented in the division 2, one would like to se-
lect the large enongh interval of the incident nen-
trons energies AE=F_  —F, . . Inthis set of the
calculations we accepted the value AE =100 keV
from E;, =600 keV up to E,.x =700 keV. Then
the moment of the neutron-nucleus collision 1s fixed
with the precision of Af, =#/AE=66x10""s,
This makes 1t possible to use the concept of the
probability density function £, (7,70, (time pow-
er spectrum) for the time mtervals via which the
back scattered neutrons appear.

Another important point that influences on the
results 1s the resonance statistics. The approaches
to the time evolution in the course of nuclear reac-
tions often ignore of the resonance widths statis-
tics and nse to some extent arbitrary assumption
about resonance spacings statistics (for instance
see [3]). This makes the analytical caleulation sim-
pler. Actually the reasonable assumption is that level
spacings must obey the Wigner distribution and the
resonance widths must have the Porter-Thomas
distribution [8].

Nevertheless we shall start with the caleulation
of the model time probability density function un-
der the assumption that all the resonances of the
same spin-parity J" have the identical value T .
and spasings DJ,, ,have the Wigner distribution.
The mean values [, and D , , from the equations
(15) and (16) were used in the scattering ampli-
tude calculation.

Thus we can check the adequacy of the model
by the comparison of the expennmental data on the
neutron scattering cross sections [9], [10] and the
theoretical estimations of the time parameters [3]
with the present calculations. Table 2 lists the ap-
propriate energy averaged values that have been
chosen for the comparison.

Table 2. The intercomparison of the data

(©ae [{01),, [(0.0%), <t > cpimy™™
Exp.[9]. [10][3.85 £ 0.043[19.1 £ 0.4] 067 20,14
Gale.[3] 18 089
Thls work 5,84 19,9 07 17,7 1,06

It is clear from the table 2 that there 1s a good
agreement of our calculations and the high resolu-
tion experimental total cross sections moments
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<°:m >m-- (m =1, 2) and the average zero angle dif-
ferential cross section 20.v{0 - The average time
parameters <, (1) > and Dt,, (1) have
been calculated making use of equations (1-3). The
model time probability density function £, (£,70),,,,
for the fixed r_,n values has been used in these cal-
culations. The Table 2 gives also the results of the
average time parameters calculations as per [3] for
the compound neutron scattering by the nuclei 8Ni
at (E) = (.65 MeV. Really the approach [3] gives
the average time parameters for the specific J,
values. To be of use it was necessary to average
these values taking into account the contribution
of the different Jr quantities to the whole scatter-
ing pattern. Thereby the appropriate resonance den-
sities p,, =1/ D, have been used as the weighed
factors. One may state that there is the visible
agreement of both mean time delay o " =
=(Digd<te> )!-L,znp estimations. The difference

Pl Ty (1075 7)

between the relative fluctuations of the time delay
may originate from the different statistics for the
resonance spacing. It was the Poisson distribution
that has been used by Lyuboshits [3] when we used
the Wigner distribution.

It demonstrates the importance of the statisti-
cal assumptions for the results of the higher time
delay moments estimations. More grave difference
appears when we consider the time probability
density functions. The time delay probability den-
sity function of [3] is a smooth curve which be-
comes non-exponential when the resonance over-
lap parameter
— 2“":1—‘.}:1:

Xin
DJ‘.IT

is large enough.
But as shown in fig.1 (the thin curve) the time
delay power spectrum B, (1. Tt)m,,ﬁrJ demonstrates

£ (10"s)

Fig. 1. The model (I';,-const., Dy~ the Wigner distribution) time delay power spectrum P, (1, )., (the thin curve) for the
backward neutron scattering by the *Ni nuclei (0,7 = E = 0.6 MeV). The thick curve depicts the smoothed data

the prominent peak structure. The sharpest devia-
tions from the exponent take place at (<
<< t,,(m) >\ After the smooth (the thick cur-
ve) the data in fig. 1 take up the shape that is ex-
pected from [3]. Then the deflection from the ex-
ponential curve at the small delay times is present
because of large enough resonance overlap parame-
ter x, . = 2,27 for the s-orbital wave.

Even more expressive peak structure shows up
when further to the Wigner distribution for the
resonance spacing the resonance widths statistics
is taking into consideration. Figure 2 gives the re-
sults of B,,(1.10),,,, calculations with using of the
chi-squared distribution with three degrees of free-

dom of the resonance widths. Figure 3 is the same
for the chi-squared distribution with one degree of
freedom (the Porter-Thomas distribution). The
source of this peak structure may be seen if we
caleulate F,,(f),,,, the distribution for the only J,
1 wave neglecting of the statistics [ and D. Figure
4 shows the result. Quite unexpectedly one does
not see a smooth exponential curve which is char-
acteristic for the isolated resonance. Instead of this
the regular peak structure of monotone decreas-
ing amplitudes is apparent when only one J* value
takes part in the scattering process and all the res-
onances have the same widths I' and spacings D.

The time interval between peaks is about 7 =2nh/ D
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that is the time of the Poincare cycle and the de-
creasing is governed by T. This regular peak struc-
ture becomes non-regular if the resonances on the
finite averaging interval AE are distributed random-
ly or (and) are overlapped. Further complication of
the structure causes by the statistically distributed
widths and by the superposition of the waves with
the different J* values. Still the discrete peak struc-
ture survives (see figures 1-3). There is a trend to
concentrate the time spectrum intensity near the
single peak at the small delay when one passes from
figure 1 to figure 3 cases. This fact may be the
mark of the incomplete equilibration in the inter-
mediate nuclear system on the early stage.

0,40 |
0,35 1 f
0,30 - |
0.25 |
0204 |
oasd ||
o.104/| ||

Pty Moy (1071787)

0,05

0 5 10 15 20 25 30
{(1075)

Fig. 2. The model (I'j;-the chi-squared distribution with three

degrees of freedom. Dy~ the Wigner distribution) time delay

power spectrum P, (f, T).., for the backward neutron
scattering by the **Ni nuclei (0.7 = E = (0.6 MeV)

The important observation is that the degree of
this incompleteness is determined by the underly-
ing statistical assumptions and by the energy scale
of the averaging.

5. Parametrization

The stochastic character of the time power
spectra in figures 1-3 is obvious. Now let us use
the analytic simplification of the situation. If we
refer back to figure 4 we find that the periodic and
aperiodic components may be seen there. The
dashed curve shows the approximation of P,,.(#)comp
for t > 0 with the expression

P ey =
sin[%) i -
P )T

-L2 X +

N
(18)

=

+(1-B)—.

T

Here the first addend represents the periodic
contribution and the second addend represents
aperiodic one to the whole P,,,(f)comp pattern.

The term in the square brackets serves for the
exclusion of the very small near zero delays. Con-
sequently L = 107 is an arbitrary large number and
s determines the point of truncation. The other pa-
rameters are as follow:

D and I" are the resonance spacing and width
when 9§ is the parameter of the time peak shape;

T is the mean time delay of the exponential part
of Py(0)comp and B is the relative contribution of the
periodic component.

At last N is the normalizing constant that en-
sures the equality

| Bty =1
0

The dashed curve in figure 4 shows the excel-
lent agreement of the approximation (18) and the
model P,u(f)comp (coefficient of determination R? =
=0,991) when only one .J* value takes part in the

0,5 1

0 2 4 6 8 10 12 14 16 18 20
f(10"s)
;5 A
b

5
= 1,0
2
B
= 0,54
ol

0.0 m'J M— . - L] "

2 4

6 8 10 12 14 16 18 20

¢ (10"s)

0

Fig. 3. The model (I';;-the Porter-Thomas distribution.
Dj,- the Wigner distribution) time delay power spectrum
Pt T)ewmp (points) for the backward neutron scattering by
the ™Ni nuclei; 0.7 > E = 0.6 MeV (a) and 0.8 = E = 0.5 MeV
(b). The solid curves show the approximation of P..(% 7).,
with (18): R*=0.85 for (a) and ®* =0.98 for (b) cas
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1] 14 20 3o 40 30 60 70
£ (10%5)

Fig. 4. The model (T, -constant, Dy,. -constant) time delay
power spectrum P, (7)., (the thin curve) for the p,, wave
neutron scattering by the N7 nuclei (0.7 = E = 0,6 MeV).

The dashed curve shows the approximation of (),
with {18)

scattering process and all the resonances have the

same widths and spacings D. The most remarka-

ble fact is that the values D = (9,725 £ 0,002) keV

and I' (0,596 + 0,009) keV extracted from the least

squares fit are the same as D, - and T, ,- values
in the equations (15) and (16).

These circumstances let us hope that the ex-
pression (18) will be fruitful for the approximate
estimation of the regular parts of the time power
spectra, Namelv we intend to apply the expression
(18} to the least squares fit of the model time pow-
er spectra that have been calculated at the differ-
ent statistical assumptions. The figures 3a and 3b
demonstrate the quality of this fit for the model
[, - the Porter-Thomas distribution, D, — the
Wigner distribution. Mainly the dependence of the
parameters D, I and [3 on the statistical assump-
tions would be of special interest. The table 3 dem-
onstrates the set of the extracted parameters val-
ues.

It must be stated that parameters D and I” one
may consider as the effective values for the pre-
compound decay of the nuclear composite system
when B value is the measure of the pre-compound
process contribution.

Table 3. The parameters of the time power spectra for the resonance neutron scattering by the *Ni nuclei. For
0,7 > E = 0,6 MeV interval:1-the resonance spacings and widths are fixed; 2—-4 — the resonance spacings
obey the Wigner distribution and as to resonance widths 2 satisfies the fixed resonance widths, 3 — satisfies
the chi-squared distribution with three degrees of freedom and 4 — satisfies the Porter-Thomas distribution.

For 0,5 > E > 0,8 MeV interval 5 is the same as 4

1 2 3 4 5
DkeV 9,718 + 0,012 1300+ 0,04 11,780 + 0,006 223+08 32,77+ 0.07
[keV 1,09+ 0,06 1,9+0.5 83x1,3 12 95£05
B 0,84+0,12 0,10 £0,07 0,18 £0,05 0,16 0,04 | 0,57+0,05
() S 14.9 17,7 14.5 104 13
(101%5)
(1Y 1.13 1,06 1.36 148 1.78

6. Final remarks

In this paper we have applied the conception of
the time evolution study to the analysis of the scat-
tering of the resonance neutrons by the medinm
mass nuclei. Specifically it was the **A7 nuclei
bombarded by the neutrons with mean energy
< E>= 0,65 MeV. The mean time delays and the
time delays <¢,,(r) > relative standard devi-
ations ¢, ()" for the backward scattering
were determined by using of the time dependent
formalism under different statistical assumptions.
The multi-resonance model amplitude with the
experimental based resonance spaces and widths
have been employed in these calculations, There is
a good agreement of the experimental data on the
neutron scattering cross sections [9], [10] and the
theoretical estimations of the time parameters [3]
with the present model calculations. At last the time
power spectra £, (f,)c.,, for the delayed back-

ward neutron scattering have been found The
corresponding calculations have been carried ont
using different approaches to the statistical behav-
1our of the resonance spacings and widths. The
time probability density distribution £, (f, )
demonstrates the prominent peak structure. The
sharpest deviations from the exponent take place
at t <<, (7) >\“%)  To our opinion this factis the
mark of the mmcomplete equilibration m the inter-
mediate nuclear system on the early stage. To
study the problem the approximate formula (18)
has been applied to fit the model distributions
B,y (1,70 ooy The effective spacing D and T width
for the non-equilibrium part of the time power spec-
tra have been found. The important conclusion is
that these values and the degree of the nuclear
equilibration (1 — §) are determined by the under-
Iving statistical assumptions and by the energy scale
of the averaging.
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Finally it may be stated that the study of the time addition to the traditional analysis of the experi-
ments with energy broadened beams.

evolution in the course of the nuclear reactions

brings rather fruitful results and may be a good
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I. Ilpokoneys

YACOBHUM AHAJII3 PO3CISHHSI
PE3OHAHCHUX HENTPOHIB SJIPAMU

Po3cisuHa pe3oHaHCHUX HelUmpoHie A0pamu po32ni0aemocs 3 MOYKU 30Dy eeoarouii y uaci.
Po3spaxoeano wjinbHicme imogipHocmi uacy 3ampumxu y 0aHomy npoueci. 3 yiero memoro 6y10 po36UHYMO
npouedypy po3paxyHKie, wo 8paxo8ye cmamucmuKy pe3oHancie i 6a3yemocs Ha eKCcnepuUMeHmanbHUx
3HAYEHHAX CcepeOHiX MIJDCPe30HAHCHUX gi0cmanell i cepeOHix wupuH pe3oHaucie. Ik munosuii npuxkaad
PO3AAHYMO 8UNAOOK, KOAU MitenHIo € A0pa izomony " Ni. JIna po3cianua Hazad 6yn0 oyineHo cepeoHi
uacosi napamempu NPOMIidDCHOI A0epHOi cucmemu. HUCKYmyemobcs 6nauU8 cmamucmudyHUxX Npunyulets
Ha pe3yabmam uacosux pospaxyrkie. Ilokazano, wjo eghekm HenoHO20 8PIGHOBANCEHHS NPOMINCHOL
A0epHoi cucmemu 3anexcums 8i0 Uux cmamucmuuHux nPUnyueHs.



