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Abstract

Abstract

Due to the growing size of the matrices used in
applications, it is useful to carefully distinguish between
some groups of matrix algorithms. We propose to use

algebraic classification as the main way to group matrix
algorithms. From an algorithmic point of view, we propose
to highlight the class of block-recursive algorithms. These
algorithms make it possible to ensure a uniform load of a

computing cluster, to solve the problem of protecting
against failure of its individual nodes, and, in addition,

they have the complexity of matrix multiplication.
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Introduction

Appearance of the supercomputer system with hundreds of thousands of
cores poses many problems. The three main ones are

1) uniform load of equipment,

2) control the growth of the error of numbers during calculations

3) protection against possible physical failures of individual processors.

(See at: Dongarra J. With Extrim Scale Computing the Rules Have Changed. In
Mathematical Software. ICMS 2016, 5th International Congress, Procdistributed
memoryeedings (G.-M. Greuel, T. Koch, P. Paule, A. Sommese, eds.), Springer,
LNCS, volume 9725, pp. 3-8, 2016)
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Introduction: first problem

The first problem is the uniform load of equipment.
In the paper “Reazul Hoque, Thomas Herault, George Bosilca, Jack Dongarra:

Dynamic Task Discovery in PaRSEC- A data-flow task-based Runtime. Proc.

ScalA17, Proceedings of the 8th Workshop on Latest Advances in Scalable

Algorithms for Large-Scale Systems,November 12-17, 2017, Denver, CO, USA

(2017)” the authors

presented a new task insertion extension for their system PaRSEC,
Dynamic Task Discovery (DTD), supporting shared and distributed
memory environments.

We suggest another dynamic control scheme (Drop-Amine-Pine) for a
parallel computing process.
But it can be used only for block-recursive algorithms. In such algorithms,
independent separate subtasks apply to blocks, so it is easy to organize
decentralized control of the entire computational process.
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Introduction: second problem

The second problem is the accumulation of errors during calculations. The
larger the matrix size, the more error can accumulate.

We can offer only two ways to solve this problem. The first way is to
increase the number of bits in the machine word. The second way is to
find the exact solution in rational numbers. Both solutions increase the
computational complexity of the algorithm.

It is important to understand which method should be used in a specific
algorithm. For this purpose, we propose to distinguish between three
groups of matrix algorithms.

Let a set of matrices be given. All source numbers are rational numbers. If
your algorithm uses only rational operations, then you have the
opportunity to get an exact answer with respect to the input data.

If the approximate calculations are used, then the calculations error
increases with the number of operations. Consequently, with the growth of
matrix sizes, there comes a moment when the error exceeds the allowed
limits.

For example, in the Gauss algorithm, errors can exceed the exact solution
already for matrices of order 10 if these matrices are ill-conditioned. For
every well-conditioned matrix, this boundary also has a well-defined size.
What should be done if the size of the matrix exceeds this limit value?
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Three classes of matrix algorithms

Three classes of matrix algorithms

We have to change the computational paradigm acording to the class of
matrix algorithms. All matrix algorithms are divided into three separate
classes:

(MA1) the rational direct matrix algorithms,

(MA2) the irrational direct matrix algorithms (expressed in radicals),

(MA3) the iterative matrix algorithms (not expressed in radicals).
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The first class (MA1)

The first class (MA1) contains algorithms that use only four arithmetic
operations. As a result, only rational functions can be computed. This
class includes:
– an algorithm for solving systems of linear equations,
– calculating the inverse matrix, a determinant,
– a similar three-diagonal matrix,
– a characteristic polynomial,
– a generalized inverse matrix,
– a kernel of a linear operator,
– LU, LEU and LDU decompositions,
– Bruhat decomposition and so on.
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The second (MA2) class

The second (MA2) class consists of all direct methods that did not fall
into the first class.
Elements of matrices that are obtained as a result of the application of
these methods cannot be obtained in the form of rational functions. But
all numbers in result may be expressed in radicals.
This class includes algorithms for QR-decomposition of matrices,
orthogonal calculations of a similar two-diagonal matrix, and others.
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The third class (MA3)

The third class (MA3) consists of all remaining
algorithms, in which iterative methods are used.
– The algorithms for calculating eigenvalues and
eigenvectors of a matrix and
– algorithms for SVD decomposition.
It is a complete analogy with algorithms for solving
algebraic equations:
– The first class – solving linear equations.
– The second class – equations of the 2,3 and 4 degrees.
– The third class – iterative algorithms for solving
algebraic equations (≥5).
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MA1. 1. Matrix Multiplication

MA1-algorithms
/
1. Recursive standard and Strassen’s matrix
multiplication

(
A0 A1

A2 A3

)
×
(
B0 B1

B2 B3

)
+

(
C0 C1

C2 C3

)
=

(
D0 D1

D2 D3

)
D0 = A0B0 + A1B2 + C0,D1 = A0B1 + A1B3 + C1,D2 =
A2B0 + A3B2 + C2,D3 = A2B1 + A3B3 + C3.
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MA1. 2. Recursive inversion of triangular matrix

2. Recursive inversion of triangular matrix
/

If A =

(
A 0
B C

)
is invertible triangular matrix of

order 2k then

A−1 =

(
A−1 0

−C−1BA−1 C−1

)
.
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MA1. 3. Recursive Cholesky Decomposition

3. Recursive Cholesky decomposition
Chol(A) = (H ,H−1) is called an Cholesky decomposition,

if A = HHT , A =

(
A1 A2

AT
2 A3

)
, H =

(
B 0
C D

)
. A is a

positive definite symmetric matrix and H is a low triangle.
Let Chol(A1) = (B ,B−1). Then we can compute

C = AT
2 (B−1) and F = A3 − CCT

Let Chol(F ) = (D,D−1). Then

H =

(
B 0
C D

)
and H−1 =

(
B−1 0

−D−1CB−1 D−1

)
.
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MA1. 4. Recursive Strassen’s Matrix Inversion

4. Recursive Strassen’s matrix inversion

Let A =

(
A0 A1

A2 A3

)
, det(A) 6= 0 and det(A0) 6= 0 then the inverse matrix

can be calculated as follows:

A−1 =

(
I −A−1

0 A1

0 I

)(
I 0

0 (A3 − A2A
−1
0 A1)−1

)

×
(

I 0
−A2 I

)(
A−1
0 0
0 I

)
=

(
M6 M1M4

M5 M4

)
We have denoted here M0 = −A−1

0 , M1 = M0A1, M2 = A2M0,
M3 = M2A1, M4 = (A3 + M3)−1, M5 = −M4M2, M6 = M1M5 −M0.
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MA1. 5-a. Recursive computation of the adjoint and
kernel: 1 of 2

M =

(
M11 M12

M21 M22

)
Aext(M11, d0) = (A11,S11,E11, d11).

M1
12 =

A11M12

d0
,M1

21 = −M21Y11

d0
,M1

22 =
M22d11 −M21E

T
11M

1
12

d0
.

Aext(Ī11M
1
12, d11) = (A12,S12,E12, d12),Aext(M

1
21, d11) = (A21,S21,E21, d21).

M2
22 = −A21M

1
22Y12

(d11)2
, ds =

d21d12
d11

.

Aext(Ī21M
2
22, ds) = (A22,S22,E22, d22).

M2
11 = −S11Y21

d11
,M2

12 =

(
S11E

T
21A21

d11
M1

22−I11M
1
12d21

d11

)
Y12 + S12d21

d11
,M3

12 = −M2
12Y22

ds
,
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MA1. 5-b. Recursive computation of the adjoint and
kernel: 2 of 2

M3
22 = S22 −

I21M
2
22Y22

ds
, A1 = A12A11, A

2 = A22A21,

L =

(
A1 − I11M

1
12E

T
12A

1

d11

d11

)
d22, P =

A2 − I21M
2
22E

T
22A

2

ds

d21
,

F = −

(
S11E

T
21A21

d11

)
d22 +

M2
12E

T
22A

2

ds

d21
, G = −

(
M21E

T
11A11

d0

)
d12 +

M1
22E

T
12A

1

d11

d11
,

A =

(
L+FG
d12

F

PG
d12

P

)
,S =

(
M2

11d22
d21

M3
12

S21d22
d21

M3
22

)
,E =

(
E11 E12

E21 E22

)
, d = d22.

Then
Aext(M, d0) = (A,S ,E , d22).

Iij = EijE
T
ij , Īij = I− Iij ,Yij = ET

ij Sij − dij I, i , j ∈ 1, 2.
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MA1. New paradigm for NA1 class

All NA1 class algorithms have a complexity of ∼ n3 (or ∼ nβ) in
operations on matrix elements using standard matrix multiplication (or
fast matrix multiplication with nβ operations). For numerical matrices,
one can obtain exact solutions by spending another n2 (or nα, or n) bit
operations for standard multiplication of numbers (or fast multiplication of
numbers (with complexity nα), or the use of finite fields).

In all these algorithms, we obtain an exact solution and the question of the
accumulation of error does not arise here.
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NA2 class

Aalgebraic constructions of class NA1 cannot be applied to algorithms of
class MA2. The main task is the
formulation of algorithms in a block-recursive form.

We know today two such block-recursive algorithms. These are the
algorithms of orthogonal decomposition: the QR-algorithm and
the first part of the SVD-algorithm (which ends with the construction of a
similar tridiagonal matrix).

We present only a QR-algorithm. We propose another way of presenting
the algorithm of Schonhage and we calculate the exact number of
operations.
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MA2. QR-algorithm 1

Let A be a matrix over a real numbers. It is required to find the upper
triangular matrix R and the orthogonal Q matrix such that A = QR.

Consider the case of a 2× 2 matrix. The desired decomposition A = QR
has the form: (

α β
γ δ

)
=

(
c −s
s c

)(
a b
0 d

)
,

where the numbers s and c satisfy the equation s2 + c2 = 1. If γ = 0 then
we can set c = 1, s = 0. If γ 6= 0, then we get ∆ = α2 + γ2 > 0,
c = α/

√
∆, s = γ/

√
∆. We denote such a matrix Q by gα,γ .
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MA2. QR-algorithm 2

Let the matrix A be given, its elements (i , j) and (i + 1, j) be α and γ, and
all the elements to the left be zero: ∀(s < j) : (ai ,s = 0) & (ai+1,s = 0).

Let Gi ,j = diag(Ii−1, gα,γ , In−i−1). (there are called Givens matrices).
Then the matrix Gi ,jA differs from A only in two rows i and i + 1, but all
the elements to the left of the column j remain zero, and in the column j
in i + 1 line will be 0.
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MA2. QR-algorithm 3

SEQUANTIAL ALGORITHM
(1). First we reset the elements under the diagonal in the left column:

A1 = G1,1G2,1...Gn−2,1Gn−1,1A

(2). Then we reset the elements that are under the diagonal in the second
column:

A2 = G2,2G3,2...Gn−2,2Gn−1,2A1

(k). Denote G(k) = Gk,kGk−1,k ...Gn−2,kGn−1,k , k = 1, 2, .., n − 1. Then,
to calculate the elements of the k th column, we need to obtain the
product of matrices

Ak = G(k)Ak−1.

(n-1). At the end of the calculation, the element in the n − 1 column will
be reset: An−1 = G(n−1)An−2 = Gn−1,n−1An−2.
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MA2. QRG decomposition 4

Let a matrix M of size 2n × 2n be divided into blocks: M =

(
A B
C D

)
.

There are three stages in this algorithm.
(Stage 1). The QRG decomposition of the block C :

C = Q1C1, M1 = diag(I ,Q1)M =

(
A B
C1 D1

)
.

(Stage 2). The cancellation of a parallelogram composed of two triangular
blocks: the lower triangular part AL of the block A and the upper
triangular part CU

1 of the block C1. Denote the upper triangular matrix A1

and annihilating matrix Q2:

Q2

(
A
C1

)
=

(
A1

0

)
, M2 = Q2M1 =

(
A1 B1

0 D2

)
.

(Stage 3). The QRG decomposition of the D2 block: D2 = Q3D3.

R = diag(I ,Q3)M2 =

(
A1 B1

0 D3

)
.
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MA2. QR-algorithm 5

As a result, we get:

M = QTR, Q = diag(I ,Q3)Q2 diag(I ,Q1).

Since the first and third stages are recursive calls of the QRG procedures,
it remains to describe the parallelogram cancellation procedure. Let’s call
it a QP decomposition.
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MA2. QP-decomposition 6

We are looking for the factorization M =

(
A
BU

)
= QP = Q

(
AU

0

)
.

M have dimensions 2n× n, BU and AU have an upper triangular shape, Q
is the orthogonal matrix:

M =


A1 A2

A3 A4

BU
1 B2

0 BU
4

 = Q


AU
5 A6

0 AU
7

0 0
0 0


We can consistently perform columns invalidation (using Givens matrices)
by traversing column elements from bottom to top and traversing columns
from left to right.
For the block-recursive procedure we can break the parallelogram into 4
equal parts. To cancel each of them, we will simply call the parallelogram
cancellation procedure 4 times: the bottom left (Pld), simultaneously the
top left (Plu) and the bottom right (Prd), and then the top right (Pru).
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MA2. QRG -algorithm 7

The corresponding orthogonal Givens matrices of size n × n are denoted
Qld . Qlu. Qrd and Qru. Let

Q̄ld = diag(In/2,Qld , In/2), Q̄ru = diag(In/2,Qru, In/2),

As a result, we get:

Q = Q̄ru diag(Qlu,Qrd)Q̄ld

The number of multiplications of matrix blocks of size n/2× n/2 is 24.
Hence the total number of operations: Cp(2n) = 4Cp(n) + 24M(n/2)..
Suppose that for multiplication of two matrices of size n× n you need γnβ

operations and n = 2k , then we get:
Cp(2k+1) = 4Cp(2k) + 24M(2k−1) = 4kCp(21) +24γ

∑k−1
i=0 4k−i−12iβ =

24γ(n2/4)2
k(β−2)−1
2(β−2)−1

+ 6n2 = 6γ nβ−n2

2β−4
+ 6n2

Cp(n) =
6γnβ

2β(2β − 4)
+

3n2

2
(1− γ

2β − 4
)
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MA2. The complexity of QRG decomposition algorithm 8

Let us estimate the number of operations C (n) in this block-recursive
decomposition algorithm, assuming that the complexity of the matrix
multiplication is M(n) = γnβ, the complexity of canceling the
parallelogram is Cp(n) = δnβ, where δ, β, γ are constants, δ = 6γ

2β(2β−4)

and n = 2k : C (n) = 2C (n/2) + Cp(n) + 6M(n/2) = 2C (2k−1)
+Cp(2k) + 6M(2k−1) =

=
γ6(2β − 3)

(2β − 4)(2β − 2)
(nβ − 2n

2β
)
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MA2. New paradigm for the MA2-class (MA3)

These two MA2-class algorithms have a complexity of ∼ n3 (or ∼ nβ) in
operations on matrix elements using standard matrix multiplication (or
fast matrix multiplication with ∼ nβ operations).

We cannot avoid rounding errors. Therefore, it is necessary to be able to
control the calculation error by increasing the number of digits for
storing numbers.

Control of calculation errors in MA3-class requires special additional
studies.
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Dynamic algorithms

Parallel algorithms for distributed memory are divided into two
classes: static and dynamic.

Static algorithms are those in which all data transfers between nodes can
be scheduled before the start of the calculations.

Dynamic matrix algorithms are based on matrix block-recursive
algorithms.

In such algorithms, the matrix is recursively divided into blocks.

A block-recursive algorithm is again applied to each of the blocks.

This happens as long as the blocks remain large enough. When the block
size becomes small enough, the sequential algorithms are applied to the
blocks.

This limit for the size of a small block depends on the physical
characteristics of the computing device and should be automatically
adjusted to the specific equipment.
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The dynamic algorithm has three stages

First stage. This is the initial construction of the connections tree for
computational nodes. The large blocks are sent from the root node to a
child along with lists of free nodes. From these child nodes, data is sent
further, but already with smaller blocks and corresponding parts of the list
of free nodes.

Second stage. It occurs when either all the free nodes have received their
subtasks, or when the size of the blocks has decreased to a certain
boundary, which is predetermined. The tree of connections is constructed
and the calculations are started on leaf vertices.

The third stage. At this stage, the results are returned from leaf vertices
to the root vertex. The result of the main task is obtained at root vertex
and the calculations are completed.
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Automatic redistribution of subtasks

Dynamic control involves the automatic redistribution of subtasks
from overloaded nodes to free nodes.

For this purpose, a scheme is provided for transmitting information about
free nodes and information about overloaded nodes.

Both streams of information are transmitted along the tree towards the
root vertex until they meet at a certain node. After this, the information
about free vertices is redirected to the overloaded vertices.

The largest subtasks from the overloaded nodes are transmitted to the free
nodes.
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Protection scheme in case of a failure of a node

Protection scheme in case of a failure of a node during
calculations.

Let node 1 send a subtask S to node 2. Let node 2 fail and the failure
message cames to node 1. Node 1 will mark this subtask S as unsolved
and return it to the list of unsolved subtasks.

All operations of transferring results from child nodes to node 2 are
canceled.

No other action is required.

The computational process continues on all other nodes without changes.

This scheme was implemented in the Java programming language using
the OpenMPI and MathPartner (http://mathpar.cloud.unihub.ru)
packages. Its was tested on the matrix multiplication and inversion.
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Conclusion

Conclusion

We proposed a new classification of matrix computational algorithms,
which decomposes all algorithms into three classes: rational, irrational and
iterative.

We discribed the new computational paradigm: using of the
block-recursive matrix algorithms for creating parallel programs that are
designed for supercomputers with distributed memory and dynamic
decentralized control of the computational process.

We have shown many examples of such algorithms. We proposed a
dynamic decentralized computation control scheme.

Thanks for your attention
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