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A parallel algorithm for solving the first border 
value problem of elasticity theory in 3D space  

by Monte Carlo method

This work concerns the solution of the first border value problem of elasticity theory for 3-dimensional 
objects of any form and connectivity.

Our approach lies in the application of random walk on spheres method for finding the solution of the 
differential equations system of the 6-th order which corresponds to this problem. The suggested algorithm 
is parallel and was designed to be run on high-performance computing clusters.
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Introduction
A parallel algorithm for solving the first bound­

ary value problem of elasticity theory is suggested. 
The problem exists in the case of an elastic body 
restrained over a part of its surface or closed within 
a rigid shell.

A continual variant of Monte Carlo method, 
namely the Random Walk on Spheres method, is 
used. This method has several features and benefits. 
It is an independent numerical method. Within this 
method, discretization is achieved not by replacing 
the continuous space with the discrete one, but by 
replacing the general population of trajectories of 
random walks with а partial selection of the trajec­
tories. Monte Carlo method can be used to solve 
both deterministic and stochastic boundary value 
problems. Estimates for functionals of the solution 
(e.g. the functional of reliability) can also be evalu­
ated. Simultaneously with the evaluation of the so­
lution, its stochastic accuracy can be estimated. The 
significant benefits of Monte Carlo method also in­
clude the ease and efficiency of code parallelization 
when implementing on modern cluster architec­
tures. 

But the method of Random Walk on Spheres is 
well known only for boundary value problems of 
second order and is hard in generalization for high­
er-order boundary value problems.

To construct an algorithm for solving problems 
of elasticity theory by the Monte Carlo method, we 
have generalized the mean value theorem, well 
known in the theory of harmonic functions. Thus, in 
our case the Lame equations have a correspondent 
integral relation between the displacement vector in 
the center of a sphere and the displacements on its 
surface [1]. The relation was obtained from the so­
lution of the elastic sphere deformation problem, in 
which a unit force is focused in the center of the 
sphere with restrained boundary.

Based on the relation, the solution of the prob­
lem has been obtained and can be estimated by 
means of the Random Walk on Spheres process.

1. Analytic PROBLEM STATEMENT
Let G ∈R3 be a limited finitely connected do­

main in 3-dimensional Euclidean space. Let symbol 
Γ  denote the boundary of the given domain. A point 
in the space will be marked as x, where x has coor­
dinates of (x1, x2, x3).

The state of some point of the domain in the ab­
sence of mass forces is described by the classical 
static Lame equation [3]:
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where:
– u( ) ( ( , , ), ( , , ), ( , , ) )x u x x x u x x x u x x x=     1 1 2 3 2 1 2 3 3 1 2 3  

is the displacement vector consisting of regular real-
valued function;

– ν is Poisson’s ratio, which characterizes the 
deformed material.

The first boundary value problem of elasticity 
theory for Lame equation lies in finding the vector 
function 2u C ( ) C ( )G G∈ ∩  which satisfies the boun
dary condition:

	 u( ) g( ), ,x x x=     ∈ Γ 	 (2)
where g C( )G∈  is the given vector function whose 
values are the displacements on the domain bound­
ary.

2. Integral representation  
of the solution

Represent the displacement vector in a point of 
elastic space through a surface integral over the dis­
placements on the sphere, drawn around the point as 
the center. This representation is the basis of our sto­
chastic scheme for solving spatial problems of elas­
ticity theory by the method of statistical experi­
ments.
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Denote
– u = (u1, u2, u3) – displacement vector;
– σ σ σ σn n n n= ( , , )     1 2 3  – tension on the plain 

which is tangent to a sphere S with radius R;
– V – domain limited by sphere S;
– X = (X1, X2, X3) – vector of volumetric forces.
The target mode of deformation in the absence 

of mass forces is defined by the boundary conditions 
of the problem (2) and by Lame equation (1). Call 
this mode the main one. To obtain the integral repre­
sentation of the displacement vector, consider an 
auxiliary mode of deformation. The latter will be 
the deformation mode of a sphere restrained over its 
surface. Let the auxiliary mode be generated by a 
unit force focused in the center of the sphere.

Now, it is possible to write the following integral 
equation which expresses the principle of reciprocal 
actions [5]: 

	

[ ( )

( ) ]

* *

* *

σ σni
si

i ni i

i i
V

i i

u u dS

X u X u dV

∫∑

∫
=

− +

+ − =

1

3

0 	
(3)

(asterisk denotes quantities relating to the auxiliary 
mode).

Expressions for the components of displacement 
and tension vectors inside ball V differ from the 
known fundamental solution of equations of the 
spatial problem of elasticity theory with certain 
summands that provide the absence of displacement 
on the surface of the ball. The following tensions 
arise on the restrained ball surface when a unit force 
is applied to its center x (x1, x2, x3) along a coordi­
nate axis j ( j = 1, 2, 3):
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From equation (3), having set ( ) ( )j
i njX xσ σ= , ob­

tain: 

	 u( ) ( , )u( ) ,x
R

A x y y dS
s
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x
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where:
– Sx – sphere with center in point x (x1, x2, x3);
– y = y (y1, y2, y3) – a point on sphere Sx.
Elements of matrix A = (aij) (i, j = 1, 2, 3) are of 

the following form:
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Thus, we have obtained the integral representa­
tion which links the displacement in the center of 

the ball to the displacement on its surface. It ex­
presses the mean value theorem for the spatial prob­
lem of elasticity theory. The matrix is the Green’s 
function of the first boundary problem for the ball.

3. Algorithm for finding the solution
3.1. Random Walk on Spheres process definition
Before constructing the algorithm for finding the 

solution of the problem it is appropriate to outline 
the concept of Random Walk on Spheres process in 
three-dimensional space [2].

3.1.1. Definition 1
Having a certain domain G ∈R3 with boundary 

Г and a point x G∈ ∪ Γ , we will call Sx the maximal 
three-dimensional sphere with center x and radius R 
if yR inf y x∈Γ= || − || , where Sx is empty if x ∈ Γ.

3.1.2. Definition 2
Having a certain domain G ∈R3 with boundary 

Г and a point x G∈ ∪ Γ, we will call ( )xΦ  Ran­
dom Walk on Spheres process starting at point x if:

– ( ) { ( , ), 0 1}x K x xϕΦ =  ≤ ≤ , i.e. ( )xΦ is the set 
of all the sequences ( , )K x ϕ  of points in three-di­
mensional space, where

– each value of φ defines a sequence of points 
1( , ) { ( , ), 0,1,...}iK x P x iϕ ϕ+=  =  generated in the follo

wing manner:
– around the point 0 ( , )P x xϕ =  as the center, 

draw a maximum sphere 
0PS ;

– select a random point 1( , )P x ϕ  from a uniform 
distribution on sphere 

0PS ;
– point 1( , )iP x xϕ+ =  is defined recursively from 

point ( , )iP x ϕ  and sphere 
iPS  in the same manner as 

point 1( , )P x ϕ  was defined after 0 ( , )P x ϕ .
3.2. Building the algorithm
Using the definition of spherical process and 

equation (5), which expresses the mean value theo­
rem in spatial elasticity theory, construct the solu­
tion of the first boundary value problem for an inter­
nal point Q of domain G when the displacements on 
its boundary Г are given.

We will call Гε a subset of points in G which are 
at a distance of not more than ε from Г. The dis­
placement of points of ε-neighborhood Гε is approx­
imately equal to the displacement of the nearest 
boundary points. Since the maximum sphere is tan­
gent to the boundary of the domain, usually only at 
a few points, the probability of transition from the 
center of the sphere to these boundary points is close 
to zero. Therefore, the ε-neighborhood of boundary 
has been introduced.

The proper value of ε depends on the gradient of 
function given on Г and on the desired solution ac­
curacy. Getting the analytical relationship between 
these quantities for an arbitrary spatial problem is 
very difficult. Therefore, in practice the value of ε is 
chosen as a part of the basic geometric size of the 
investigated domain.

To start with, draw the maximum sphere Sq 
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around the point Q. If the values of u(Qi) where 
known for all the Qi ∈  Sq the overall calculation 
would turn into integrating a known function over 
sphere Sq. The method of calculating definite inte­
grals using statistical sampling is implemented in 
this case as the following procedure. Generate N 
random points 0

iQ (i = 1..N ) uniformly distributed 
over the sphere Sq. Vector u(Q), according to equa­
tion (5), can be calculated as an average of products 

0 0( , ) ( )i iA Q Q u Q :

	 u Q
N

A Q Q u Qi i i i
i

N
( ) , ( , ) ( ).≈ =

=
∑1 0 0

1
ξ ξ     where 	 (7)

Actually, only the summands for such points:

Q S Si Q Q
0 ∈ =ε

ε Γ

are defined in the sum (7). Therefore, if 0
iQ ε∈Γ  the 

value of random vector 0 0( , ) ( )i i iA Q Q u Qξ =  will be 
the approximate estimate of the i-th term of series 
(7). If, on the contrary, random point 0

iQ ε∉Γ , then 
draw a new maximum sphere 0

iQ
S  and generate a 

random point Qi
1 from a uniform distribution over 

sphere 0
iQ

S . If 1
iQ ε∈Γ then set the respective i-th 

term of series (7) 0 0 1 1( , ) ( , ) ( )i i i i iA Q Q A Q Q u Qξ =   . 
Proceed the process for point 1

iQ ε∉Γ .
Thereby, trajectories which get to ε-neighborhood 

of the boundary on the k-th step would produce the 
following functional:

0 0 1 2 1 1( , ) ( , )... ( , ) ( )k k k
i i i i i i iA Q Q A Q Q A Q Q u Qξ − − −=   .
In general, a trajectory of a random walk can be 

long, but with a probability equal to one, it ends in 
Гε [2] after a finite number of steps. When building 
algorithms of Random Walk on Spheres, trajectory 
length should be limited with some number k. This 
number should be large enough so that with proba­
bility close to one the contributions of all trajecto­
ries that are possible for this area be taken into ac­
count.

3.3. Sequential algorithm scheme 
The algorithm built above can be schematically 

presented in the form of such a sequence of steps:
A. Get the target point Q on the entry.
B. UNTIL the SUFFICIENT number N of trajec­

tories not longer than k is achieved:
a. call SPHERICAL PROCESS starting at 
point Q and get result R;
b. ADD R to U;
c. INCREMENT the counter of valid trajec­
tories.

C. RETURN U/N.
SPHERICAL PROCESS consists of the follow­

ing sequence of steps:
A. GET Q as the starting point of trajectory on 

the entry.
B. If the maximum length of trajectory has been 

exceeded then return an empty result.
C. INCREMENT trajectory length. 

D. If the given point is CLOSE to boundary (i.e. 
Q ε∈Γ ) then:

a. FIND the point P ε∈Γ  which is closest to 
the given Q ;
b. RETURN the given boundary value g(P) 
as the result.

E. If the given point Q is FAR from the boundary 
(i.e. Q ε∉Γ ) then:

a. draw maximum sphere QS around point Q;
b. GENERATE a uniformly random point T 
on QS ;
c. Call SPHERICAL PROCESS recursively 
on point T and get its result R;
d. RETURN ( , )A Q T R ⋅ .

4. PaRALLEL version of the algorythm
The accuracy of the algorithm constructed above 

directly depends on the value of N. It specifies the 
number of random walks, i.e. the number of inde­
pendent experiments that should be simulated. The 
result of each of these experiments gives a contribu­
tion to estimate the solution.

Achieving the sufficient accuracy of the solution 
requires the number N to be a large value. However, 
each of the N walks requires hundreds of arithmetic 
operations, as in all the steps of a random trajectory it 
is needed to find the distance from a point to the 
boundary, to generate a random point on a sphere, 
and to multiply a matrix by a vector. The above algo­
rithm performs all of the N walks sequentially and 
spends a considerable amount of time to do that.

Applying parallel programming technologies 
and advanced computer capabilities will significant­
ly improve the speed and efficiency of the proposed 
algorithm. Algorithms based on Random Walk on 
Spheres method have excellent opportunities for 
parallelization. All the N walks are independent of 
one another, so it is possible to simulate them simul­
taneously on multiple processors.

4.1. Problem decomposition
When constructing a parallel version of the 

above algorithm the most appropriate strategy is to 
apply functional decomposition of the problem. On 
the one hand, each of the N walks does not depend 
on other walks, and all of the experiments can be 
distributed evenly among the available processors 
(denote their number by P), according to decompo­
sition by data. But on the other, the result of the al­
gorithm depends on the successful completion of all 
of the N experiments and will not be ready until 
each processor performs its part of the task. In a par­
allel environment where the involved processors are 
not equal in the terms of speed or load, decomposi­
tion by data will cause significant delays and ineffi­
ciency. For this reason it is expedient to apply func­
tional decomposition approach.

Thus, the N experiments can be divided into 
groups of n in each. Then the tasks for each proces­
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sor will be sent in portions of size n, and will be 
substituted with new ones during the execution until 
there are N experiments done in total. P processors 
can be divided into two groups: 1 senior processor 
and P – 1 executive processors. The senior proces­
sor manages the work of the executive ones, loads 
them with tasks and performs aggregation of their 
results.

This strategy of decomposition allows to balance 
the load on processors optimally and to achieve the 
optimal performance.

4.2. Parallel algorithm scheme
Hence, we propose to introduce two different 

types of threads in the parallel algorithm: senior 
processor thread and executive processor thread. 
Their schemes are given below.

4.2.1. Senior thread
A. GET the target point Q on the entry.
B. SEND point Q to executive processes. 
C. SEND the executives the first PORTION of n 

experiments.
D. UNTILL N experiments are done:

a. RECEIVE from an executive Ex an interim 
result T;
b. SEND Ex the next portion of n experi­
ments;
c. STORE the interim result T (U = U + T );
d. INCREMENT the counter of ready experi­
ments by n.

E. TERMINATE the executive processes by 
sending them an empty task.

F. RETURN the result of U/N.
4.2.2. Executive thread
A. RECEIVE the target point Q from the senior 

process.
B. RECEIVE a task t from the senior process.
C. If t is EMPTY then TERMINATE.
D. Run SPHERICAL PROCESS t times on point 

Q adding its result to R.
E. SEND the senior process the interim result R.
F. JUMP to STEP B.

5. PERFORMANCE ANALYSIS  
and time complexity

Analysis of the sequential algorithm time com­
plexity T is presented in terms of the number of 
steps made by the spherical process, because the 
amount of operations t executed at each step is fixed 
and does not affect the asymptotic estimates.

6.1. Dependence on the size of boundary ε-neigh
borhood

Number Tf of trajectory steps on its way from  
the given point to the domain boundary is a random 
function of distance from this point to the boundary 
and of the ε-neighborhood size. In paper [4], it has 
been shown that the above spherical process has the 
time the following complexity:
	 ( ) (| ln |)fT Oε ε= 	 (8)

Hence, ( ) ( ) (| ln | ) (| ln |)fT O T t O t Oε ε ε= = = , (9)
where t is a constant time complexity of one step 
and doesn’t depend on ε.

This means that the overall execution time of the 
algorithm is proportional to | ln |ε  and goes to infi
nity when approaching ε to zero:

	 0 0
lim ( ) lim | ln |T
ε ε

ε ε
→ →

= = ∞ 	 (10)
5.2. Dependence on the number of experiments N
Increasing the number N of experiments signifi­

cantly improves the accuracy of the results. But we 
should determine how the parameter N affects the 
complexity of the algorithm. Denote by t the time 
complexity of an experiment, i.e. of drawing a ran­
dom walk on the rules of the spherical process. As 
seen from the structure of the algorithm, time com­
plexity of a walk does not depend on the total 
number of walks, i.e.

	 ( )t N const= 	 (11)
Then, giving the time complexity of the whole 

algorithm as

	 ( ) ( ( )) ( ),T N O N t N O N= ⋅ = 	 (12)
we come to the obvious conclusion that its complex­
ity is a linear function of the number of experi­
ments.

5.3. Parallelization efficiency
It is important to notice that the Random Walks 

on Spheres algorithm of Monte Carlo method is an 
algorithm of minimum connectivity (connectivity 
of an algorithm is the amount of data transmitted 
from the n-th step of the algorithm to the (n + 1)-th 
step). Due to this, the efficiency of its parallelization 
is very good in comparison with other methods of 
solving such problems.

Denote by P the number of processors involved 
in the algorithm calculation, by N – the size of the 
problem. Ideal (and therefore unattainable) paral­
lelization efficiency of an algorithm whose sequen­
tial complexity is T(N) leads to the complexity of

( )( , ) T NT N P
P

= , 

when running in parallel on P processors. Such per­
formance is impossible, because a parallel imple­
mentation always adds a certain amount of time 

( , )S N P  spent on data exchange between involved 
processors.

In the case of the proposed parallel algorithm, 
( , )S N P  is a linear function of the size of the prob­

lem and the number of processors.
Denoting by n the size of a portion for one task, 

we can give such a time complexity estimate:

	
( , ) ,

( 1)
NS N P c

P n
=   

−  
	 (14)

where c is time spent on one communication be­
tween two processes.

Indeed, given that, in this algorithm, tasks are 
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sent and received in portions of n walks each, the 
total of

( 1)
N

P n−  
 

communications are needed for all of the N experi­
ments to exchange messages between the senior and 
executive processes. Time c spent on one such ex­
change is a constant and is consumed for sending 
one integer value and three floating-point values.

Since work on portions of the tasks does not re­
quire any synchronization between the executive 
processes, the time consumed by the entire group of 
processors for parallel calculations is P – 1 times 

smaller than in the case of the sequential implemen­
tation. Thus, estimation for the time complexity of 
the parallel algorithm can be presented in the fol­
lowing form:

	

( )( , )
( 1) (
T N NT N P c
P P n

= +
−  −1)

	 (15)

This time complexity is quite good and demon­
strates high parallelization efficiency, which fully 
justifies additional resources spent on development, 
implementation and launch of the respective soft­
ware.
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ПАРАЛЕЛЬНИЙ АЛГОРИТМ РОЗВ’ЯЗАННЯ  
ПЕРШОЇ КРАЙОВОЇ ЗАДАЧІ ТЕОРІЇ ПРУЖНОСТІ  

В 3-ВИМІРНОМУ ПРОСТОРІ ЗА МЕТОДОМ МОНТЕ-КАРЛО

Роботу присвячено розв’язанню першої крайової задачі теорії пружності для 3-вимірних тіл до-
вільної форми та зв’язності.

Наш підхід полягає у розробленні методу блукання сферами для знаходження розв’язку системи 
диференційних рівнянь 6-го порядку, яка відповідає цій задачі. Запропонований алгоритм є паралель-
ним і розрахованим на виконання на високопродуктивних обчислювальних кластерах. 

Ключові слова: алгоритм блукання сферами, метод Монте-Карло, перша крайова задача, теорія 
пружності, паралельний алгоритм.
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Шило В. П., Градинар І. П., Ляшко В. І.

Наближений алгоритм знаходження 
максимального k‑plex (co‑k‑plex) графу

У розвідці запропоновано та досліджено наближений алгоритм розв’язання задачі знаходження 
максимального k‑plex (co‑k‑plex) графу, який дав змогу покращити рекорди для деяких задач.

Ключові слова: граф, k‑plex, co‑k‑plex, незалежна множина, кліка, соціальні мережі, біологічні 
мережі.

Вступ
Останнім часом зріс інтерес до задач на мере­

жах, які зводяться до задач на графах. Серед них 
широке практичне застосування [2, 5] має задача 

знаходження максимального k‑plex (co‑k‑plex) 
графу, яка виникає, зокрема, при аналізі соціаль­
них, біологічних, фінансових та  ін. мереж. По­
няття k‑plex графу введено 1978 р.  у праці [6], а 
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