Isometry groups of non standard metric products

Bogdana Oliynyk ${ }^{1 *}$

1 Department of Mechanics and Mathematics, Kyiv Taras Shevchenko University, Volodymyrska 64/13, Kyiv, 01601, Ukraine

Received 27 October 2011; accepted 4 April 2012

Abstract

We consider isometry groups of a fairly general class of non standard products of metric spaces. We present sufficient conditions under which the isometry group of a non standard product of metric spaces splits as a permutation group into direct or wreath product of isometry groups of some metric spaces.

\section*{MSC:} 54E40, 54B10, 54H15, 20E22

Keywords: Isometry group • Metric space • Non standard metric product • Direct product • Wreath product © Versita Sp. z o.o.

1. Introduction

Let $\left(X_{i}, d_{i}\right), i=1, \ldots, n$, be metric spaces. To define a metric on their cartesian product $X=\prod_{i=1}^{n} X_{i}$ one can use, for instance, one of the following equalities:
$d\left(\left(x_{1}, \ldots, x_{n}\right),\left(y_{1}, \ldots, y_{n}\right)\right)=d_{1}\left(x_{1}, y_{1}\right)+\cdots+d_{n}\left(x_{n}, y_{n}\right), \quad \tilde{d}\left(\left(x_{1}, \ldots, x_{n}\right),\left(y_{1}, \ldots, y_{n}\right)\right)=\sqrt{d_{1}^{2}\left(x_{1}, y_{1}\right)+\cdots+d_{n}^{2}\left(x_{n}, y_{n}\right)}$.
There are different generalizations of these constructions. In the case $n=2$ they include μ-products [1], f-products [5], warped products [3], etc. Following A. Bernig, T. Foertsch, V. Schroeder [2] we consider non standard metric products or Φ-products of metric spaces. Let us recall the precise definition. A function $\Phi:[0, \infty)^{n} \rightarrow[0, \infty)$ is called admissible if it satisfies the following conditions:
(A) $\Phi\left(p_{1}, p_{2}, \ldots, p_{n}\right)=0$ iff $p_{1}=p_{2}=\ldots=p_{n}=0$;
(B) $\Phi\left(q_{1}, \ldots, q_{n}\right) \leq \Phi\left(r_{1}, \ldots, r_{n}\right)+\Phi\left(p_{1}, \ldots, p_{n}\right)$ for any $q_{i}, r_{i}, p_{i} \in[0, \infty)$ such that $q_{i} \leq r_{i}+p_{i}, 1 \leq i \leq n$.

[^0]Then the function

$$
d_{\Phi}\left(\left(x_{1}, \ldots, x_{n}\right),\left(y_{1}, \ldots, y_{n}\right)\right)=\Phi\left(d_{1}\left(x_{1}, y_{1}\right), \ldots, d_{n}\left(x_{n}, y_{n}\right)\right)
$$

is a metric on X [2].

Definition 1.1.

The metric space $\left(X, d_{\Phi}\right)$ is called the Φ-product of metric spaces X_{1}, \ldots, X_{n}.

Wreath products of metric spaces [6] arise as a special case of Φ-products of metric spaces. The aim of this article is to describe the isometry group of the Φ-product of X_{1}, \ldots, X_{n}, under certain conditions for Φ. We will show the relation

$$
\begin{equation*}
(\operatorname{Isom} X, X) \geq\left(\operatorname{Isom} X_{1}, X_{1}\right) \times \cdots \times\left(\operatorname{Isom} X_{n}, X_{n}\right) \tag{1}
\end{equation*}
$$

For $n=2$ we describe a family of functions Φ for which the relation (1) is an equality. More generally, we show that for certain Φ-products of two metric spaces, its isometry group splits as a permutation group into the direct product of isometry groups of naturally defined subspaces. We also present sufficient conditions on Φ under which the isometry group of the Φ-product of X_{1}, \ldots, X_{n} is isomorphic as a permutation group to the wreath product of the isometry groups of spaces X_{1}, \ldots, X_{n}.

2. Preliminaries

We will need the following.

Proposition 2.1.

Let $\Phi:[0, \infty)^{n} \rightarrow[0, \infty)$ be an admissible function. Then

$$
\Phi\left(q_{1}, \ldots, q_{i-1}, 0, q_{i+1}, \ldots, q_{n}\right) \leq \Phi\left(q_{1}, \ldots, q_{i-1}, q_{i}, q_{i+1}, \ldots, q_{n}\right)
$$

for all $q_{i} \in[0, \infty), 1 \leq i \leq n$.

Proof. If we replace q_{j}, r_{j}, p_{j} by $q_{j}, q_{j}, 0,1 \leq j \leq n, j \neq i$, and q_{i}, r_{i}, p_{i} by $0, q_{i}, 0$ respectively in condition (B), then we obtain

$$
\Phi\left(q_{1}, \ldots, q_{i-1}, 0, q_{i+1}, \ldots, q_{n}\right) \leq \Phi\left(q_{1}, \ldots, q_{i-1}, q_{i}, q_{i+1}, \ldots, q_{n}\right)+\Phi(0, \ldots, 0)=\Phi\left(q_{1}, \ldots, q_{i-1}, q_{i}, q_{i+1}, \ldots, q_{n}\right)
$$

Let q be a positive real number. It is easy to see that the function

$$
\widetilde{\Phi}\left(p_{1}, p_{2}, \ldots, p_{n}\right)= \begin{cases}0 & \text { if } p_{1}=p_{2}=\ldots=p_{n}=0 \\ q & \text { otherwise }\end{cases}
$$

is admissible. Therefore, for arbitrary metric spaces X_{1}, \ldots, X_{n} one can consider their $\widetilde{\Phi}$-product. The isometry group of $\left(X, d_{\tilde{\Phi}}\right)$ is isomorphic as a permutation group to the symmetric group $S_{|X|}$. This is the largest possible isometry group of Φ-products of X_{1}, \ldots, X_{n}.

In general, we obtain the following statement describing a candidate for the smallest possible isometry group of a Φ-product.

Proposition 2.2.

Let X be $a \Phi$-product of metric spaces $X_{1}, \ldots, X_{n}, n \geq 2$. Then the transformation group ($\operatorname{lsom} X, X$) contains a subgroup isomorphic to the direct product of transformation groups

$$
\left(\operatorname{Isom} X_{1}, X_{1}\right) \times \cdots \times\left(\operatorname{Isom} X_{n}, X_{n}\right)
$$

Thus, the direct product $\prod_{i=1}^{n}\left(\operatorname{Isom} X_{i}, X_{i}\right)$ is contained in the isometry group of the Φ-product of X_{1}, \ldots, X_{n} for any admissible Φ. In the next section, we consider conditions on Φ so that the isometry group of the space $\left(X, d_{\Phi}\right)$ is the smallest possible.

3. Direct product of transformation groups and Φ-products of metric spaces

In this section, we consider Φ-products $\left(X_{1} \times X_{2}, d_{\Phi}\right)$ of two metric spaces $\left(X_{1}, d_{1}\right),\left(X_{2}, d_{2}\right)$. We will use the following notation. For each $a_{1} \in X_{1}, a_{2} \in X_{2}$ let

$$
X_{a_{1}}^{2}=\left\{\left(a_{1}, x_{2}\right): x_{2} \in X_{2}\right\}, \quad X_{a_{2}}^{1}=\left\{\left(x_{1}, a_{2}\right): x_{1} \in X_{1}\right\}
$$

be subspaces of $\left(X_{1} \times X_{2}, d_{\Phi}\right)$. The points of $X_{a_{1}}^{2}$ are in natural one-to-one correspondence with the points of X_{2}, while the points of spaces $X_{a_{2}}^{1}$ are in natural one-to-one correspondence with the points of X_{1}. With these identifications, let the group Isom $X_{a_{1}}^{2}$ act on X_{2} and Isom $X_{a_{2}}^{1}$ act on X_{1}.

Lemma 3.1.

(i) For arbitrary $a_{1}, b_{1} \in X_{1}$ the spaces $X_{a_{1}}^{2}$ and $X_{b_{1}}^{2}$ are isometric.
(ii) For arbitrary $a_{2}, b_{2} \in X_{2}$ the spaces $X_{a_{2}}^{1}$ and $X_{b_{2}}^{1}$ are isometric.

Proof. (i) Let $g: X_{a_{1}}^{2} \rightarrow X_{b_{1}}^{2}$ be a one-to-one correspondence between $X_{a_{1}}^{2}$ and $X_{b_{1}}^{2}$ given by the equality $g\left(\left(a_{1}, x_{2}\right)\right)=$ $\left(b_{1}, x_{2}\right)$ for all $x_{2} \in X_{2}$. For different y_{2} and z_{2} from X_{2} the equalities

$$
d_{\Phi}\left(g\left(\left(a_{1}, y_{2}\right)\right), g\left(\left(a_{1}, z_{2}\right)\right)\right)=d_{\Phi}\left(\left(b_{1}, y_{2}\right),\left(b_{1}, z_{2}\right)\right)=\Phi\left(d_{1}\left(b_{1}, b_{1}\right), d_{2}\left(y_{2}, z_{2}\right)\right)=\Phi\left(0, d_{2}\left(y_{2}, z_{2}\right)\right)
$$

hold. As $d_{\Phi}\left(\left(a_{1}, y_{2}\right),\left(a_{1}, z_{2}\right)\right)=\Phi\left(0, d_{2}\left(y_{2}, z_{2}\right)\right)$,

$$
d_{\Phi}\left(g\left(\left(a_{1}, y_{2}\right)\right), g\left(\left(a_{1}, z_{2}\right)\right)\right)=d_{\Phi}\left(\left(a_{1}, y_{2}\right),\left(a_{1}, z_{2}\right)\right)
$$

Therefore, g is an isometry between $X_{a_{1}}^{2}$ and $X_{b_{1}}^{2}$.
(ii) The proof of this statement is similar to the proof of (i).

Note that groups (Isom $X_{a_{1}}^{2}, X_{2}$) and ($\operatorname{lsom} X_{2}, X_{2}$) (respectively (Isom $X_{a_{2}}^{1}, X_{1}$) and (Isom X_{1}, X_{1})) are not necessarily isomorphic. Moreover, the spaces $X_{a_{1}}^{2}$ and X_{2} (resp. $X_{a_{2}}^{1}$ and X_{1}) are not necessarily isometric, see Example 3.5 below.
Denote by C_{i} the set of values of the metric $d_{i}, i=1,2$. Assume that

$$
\begin{equation*}
\inf _{q_{1} \in C_{1}, q_{1} \neq 0} \Phi\left(q_{1}, 0\right)>\sup _{q_{2} \in C_{2}} \Phi\left(0, q_{2}\right), \quad \inf _{q_{2} \in C_{2}, q_{2} \neq 0} \Phi\left(0, q_{2}\right)>\frac{1}{2} \sup _{q_{1} \in C_{1}} \Phi\left(q_{1}, 0\right) . \tag{2}
\end{equation*}
$$

Note that the estimates

$$
\sup _{q_{1} \in C_{1}} \Phi\left(q_{1}, 0\right)<\infty, \quad \sup _{q_{2} \in C_{2}} \Phi\left(0, q_{2}\right)<\infty \quad \text { and } \quad \inf _{q_{1} \in C_{1}, q_{1} \neq 0} \Phi\left(q_{1}, 0\right)>0, \quad \inf _{q_{2} \in C_{2}, q_{2} \neq 0} \Phi\left(0, q_{2}\right)>0
$$

follow from the inequalities (2).

Theorem 3.2.

Let $\Phi:[0, \infty)^{2} \rightarrow[0, \infty)$ be an admissible function, and let $\left(X_{1}, d_{1}\right),\left(X_{2}, d_{2}\right)$ be metric spaces. Assume that Φ satisfies (2) and the following condition holds:

$$
\begin{equation*}
\Phi\left(q_{1}, q_{2}\right)=\Phi\left(q_{1}, 0\right)+\Phi\left(0, q_{2}\right) . \tag{3}
\end{equation*}
$$

Then

$$
(\operatorname{Isom} X, X) \simeq\left(\operatorname{Isom} X_{a_{2}}^{1}, X_{1}\right) \times\left(\operatorname{Isom} X_{a_{1}}^{2}, X_{2}\right)
$$

for any $\left(a_{1}, a_{2}\right) \in X_{1} \times X_{2}$.

Proof. We shall show that each $\left(g_{1}, g_{2}\right) \in \operatorname{Isom} X_{a_{2}}^{1} \times \operatorname{Isom} X_{a_{1}}^{2}$ is an isometry of $\left(X, d_{\phi}\right)$. The element $\left(g_{1}, g_{2}\right)$ acts on $X_{1} \times X_{2}$ coordinate-wise. Therefore, it suffices to show that this transformation preserves the metric d_{Φ} :

$$
d_{\Phi}\left(\left(x_{1}, x_{2}\right)^{\left(g_{1}, g_{2}\right)},\left(y_{1}, y_{2}\right)^{\left(g_{1}, g_{2}\right)}\right)=d_{\Phi}\left(\left(x_{1}^{g_{1}}, x_{2}^{g_{2}}\right),\left(y_{1}^{g_{1}}, y_{2}^{g_{2}}\right)\right)=\Phi\left(d_{1}\left(x_{1}^{g_{1}}, y_{1}^{g_{1}}\right), d_{2}\left(x_{2}^{g_{2}}, y_{2}^{g_{2}}\right)\right) .
$$

From (3) we have

$$
\begin{aligned}
\Phi\left(d_{1}\left(x_{1}^{g_{1}}, y_{1}^{g_{1}}\right), d_{2}\left(x_{2}^{g_{2}}, y_{2}^{g_{2}}\right)\right) & =\Phi\left(d_{1}\left(x_{1}^{g_{1}}, y_{1}^{g_{1}}\right), 0\right)+\Phi\left(0, d_{2}\left(x_{2}^{g_{2}}, y_{2}^{g_{2}}\right)\right) \\
& =\Phi\left(d_{1}\left(x_{1}^{g_{1}}, y_{1}^{g_{1}}\right), d_{2}\left(a_{2}, a_{2}\right)\right)+\Phi\left(d_{1}\left(a_{1}, a_{1}\right), d_{2}\left(x_{2}^{g_{2}}, y_{2}^{g_{2}}\right)\right) \\
& =d_{\Phi}\left(\left(x_{1}^{g_{1}}, a_{2}\right),\left(y_{1}^{g_{1}}, a_{2}\right)\right)+d_{\Phi}\left(\left(a_{1}, x_{2}^{g_{2}}\right),\left(a_{1}, y_{2}^{g_{2}}\right)\right) .
\end{aligned}
$$

As $g_{1} \in \operatorname{Isom} X_{a_{2}}^{1}, g_{2} \in \operatorname{Isom} X_{a_{1}}^{2}$, the following equalities hold:

$$
d_{\Phi}\left(\left(x_{1}^{g_{1}}, a_{2}\right),\left(y_{1}^{g_{1}}, a_{2}\right)\right)=d_{\Phi}\left(\left(x_{1}, a_{2}\right),\left(y_{1}, a_{2}\right)\right), \quad d_{\Phi}\left(\left(a_{1}, x_{2}^{g_{2}}\right),\left(a_{1}, y_{2}^{g_{2}}\right)\right)=d_{\Phi}\left(\left(a_{1}, x_{2}\right),\left(a_{1}, y_{2}\right)\right) .
$$

Therefore,

$$
\begin{aligned}
d_{\Phi}\left(\left(x_{1}, x_{2}\right)^{\left(g_{1}, g_{2}\right)},\left(y_{1}, y_{2}\right)^{\left(g_{1}, g_{2}\right)}\right) & =d_{\Phi}\left(\left(x_{1}, a_{2}\right),\left(y_{1}, a_{2}\right)\right)+d_{\Phi}\left(\left(a_{1}, x_{2}\right),\left(a_{1}, y_{2}\right)\right) \\
& =\Phi\left(d_{1}\left(x_{1}, y_{1}\right), 0\right)+\Phi\left(0, d_{2}\left(x_{2}, y_{2}\right)\right)=d_{\Phi}\left(\left(x_{1}, x_{2}\right),\left(y_{1}, y_{2}\right)\right) .
\end{aligned}
$$

Hence,

$$
(\operatorname{Isom} X, X) \geq\left(\operatorname{Isom} X_{a_{2}}^{1}, X_{1}\right) \times\left(\operatorname{Isom} X_{a_{1}}^{2}, X_{2}\right) .
$$

Let $\varphi \in \operatorname{Isom} X$. We show that there exist $g_{1} \in \operatorname{Isom} X_{a_{2}}^{1}$ and $g_{2} \in \operatorname{Isom} X_{a_{1}}^{2}$, such that φ acts on $X_{1} \times X_{2}$ as $\left(g_{1}, g_{2}\right) \in$ Isom $X_{a_{2}}^{1} \times \operatorname{Isom} X_{a_{1}}^{2}$ does. Let $\left(y_{1}, y_{2}\right)$ be a point from $X_{1} \times X_{2}, u_{1}$ a point from X_{1}. Then

$$
d_{\Phi}\left(\left(y_{1}, y_{2}\right),\left(u_{1}, y_{2}\right)\right)=\Phi\left(d_{1}\left(y_{1}, u_{1}\right), d_{2}\left(y_{2}, y_{2}\right)\right)=\Phi\left(d_{1}\left(y_{1}, u_{1}\right), 0\right) \leq \sup _{q_{1} \in C_{1}} \Phi\left(q_{1}, 0\right) .
$$

Denote by $\left(z_{1}, z_{2}\right)$ the value $\varphi\left(y_{1}, y_{2}\right)$ and by $\left(w_{1}, w_{2}\right)$ the value $\varphi\left(u_{1}, y_{2}\right)$. Using (3) we get

$$
d_{\Phi}\left(\varphi\left(y_{1}, y_{2}\right), \varphi\left(u_{1}, y_{2}\right)\right)=d_{\Phi}\left(\left(z_{1}, z_{2}\right),\left(w_{1}, w_{2}\right)\right)=\Phi\left(d_{1}\left(z_{1}, w_{1}\right), d_{2}\left(z_{2}, w_{2}\right)\right)=\Phi\left(d_{1}\left(z_{1}, w_{1}\right), 0\right)+\Phi\left(0, d_{2}\left(z_{2}, w_{2}\right)\right) .
$$

Assume that $z_{2} \neq w_{2}$. Then using (2) we obtain

$$
\begin{aligned}
\Phi\left(d_{1}\left(z_{1}, w_{1}\right), 0\right)+\Phi\left(0, d_{2}\left(z_{2}, w_{2}\right)\right) & \geq \inf _{q_{1} \in C_{1}, q_{1} \neq 0} \Phi\left(q_{1}, 0\right)+\inf _{q_{2} \in C_{2}, q_{2} \neq 0} \Phi\left(0, q_{2}\right)>\frac{1}{2} \sup _{q_{1} \in C_{1}} \Phi\left(q_{1}, 0\right)+\frac{1}{2} \sup _{q_{1} \in C_{1}} \Phi\left(q_{1}, 0\right) \\
& =\sup _{q_{1} \in C_{1}} \Phi\left(q_{1}, 0\right) .
\end{aligned}
$$

We have

$$
d_{\Phi}\left(\varphi\left(y_{1}, y_{2}\right), \varphi\left(u_{1}, y_{2}\right)\right)>\sup _{q_{1} \in C_{1}} \Phi\left(q_{1}, 0\right)
$$

But φ is an isometry of the space X. Hence $z_{2}=w_{2}$, i.e. $\varphi\left(u_{1}, y_{2}\right)=\left(w_{1}, z_{2}\right)$. Then the mapping φ acts as an isometry between subspaces of the form $X_{a_{2}}^{1}, a_{2} \in X_{2}$.
Denote by g_{1} the restriction of φ on $X_{y_{2}}^{1}$. Then $z_{1}=g_{1}\left(y_{1}\right)$. We shall show that φ acts on each subspace of the form $X_{a_{2}}^{1}, a_{2} \in X_{2}$, as g_{1}. Fix arbitrary $\left(b_{1}, b_{2}\right) \in X_{1} \times X_{2}$. Assume that $\varphi\left(b_{1}, b_{2}\right)=\left(h_{1}, h_{2}\right)$. We shall show that $h_{1}=g_{1}\left(b_{1}\right)$. Indeed, in the opposite case from (2) it follows

$$
d_{\Phi}\left(\left(b_{1}, y_{2}\right),\left(b_{1}, b_{2}\right)\right)=\Phi\left(0, d_{2}\left(y_{2}, b_{2}\right)\right)<\inf _{q_{1} \in C_{1}, q_{1} \neq 0} \Phi\left(q_{1}, 0\right)
$$

and

$$
\begin{aligned}
d_{\Phi}\left(\varphi\left(b_{1}, y_{2}\right), \varphi\left(b_{1}, b_{2}\right)\right) & =d_{\Phi}\left(\left(b_{1}^{g_{1}}, z_{2}\right),\left(h_{1}, h_{2}\right)\right)=\Phi\left(d_{1}\left(b_{1}^{g_{1}}, h_{1}\right), d_{2}\left(z_{2}, h_{2}\right)\right)=\Phi\left(d_{1}\left(b_{1}^{g_{1}}, h_{1}\right), 0\right)+\Phi\left(0, d_{2}\left(z_{2}, h_{2}\right)\right) \\
& \geq \inf _{q_{1} \in \mathcal{C}_{1}, q_{1} \neq 0} \Phi\left(q_{1}, 0\right) .
\end{aligned}
$$

Therefore, the isometry φ acts on each subspace $X_{a_{2}}^{1}, a_{2} \in X_{2}$, as g_{1}.
Let now u_{2} be a point from X_{2}. Then

$$
\begin{equation*}
d_{\Phi}\left(\left(y_{1}, y_{2}\right),\left(y_{1}, u_{2}\right)\right)=\Phi\left(0, d_{2}\left(y_{2}, u_{2}\right)\right) \leq \sup _{q_{2} \in C_{2}} \Phi\left(0, q_{2}\right)<\inf _{q_{1} \in C_{1}, q_{1} \neq 0} \Phi\left(q_{1}, 0\right) \tag{4}
\end{equation*}
$$

Suppose that $\varphi\left(y_{1}, u_{2}\right)=\left(v_{1}, v_{2}\right)$. Using (3) we obtain

$$
d_{\Phi}\left(\varphi\left(y_{1}, y_{2}\right), \varphi\left(y_{1}, u_{2}\right)\right)=d_{\Phi}\left(\left(z_{1}, z_{2}\right),\left(v_{1}, v_{2}\right)\right)=\Phi\left(d_{1}\left(z_{1}, v_{1}\right), d_{2}\left(z_{2}, v_{2}\right)\right)=\Phi\left(d_{1}\left(z_{1}, v_{1}\right), 0\right)+\Phi\left(0, d_{2}\left(z_{2}, v_{2}\right)\right)
$$

Assume that $z_{1} \neq v_{1}$. We have

$$
\begin{equation*}
d_{\Phi}\left(\varphi\left(y_{1}, y_{2}\right), \varphi\left(y_{1}, u_{2}\right)\right) \geq \inf _{q_{1} \in C_{1}, q_{1} \neq 0} \Phi\left(q_{1}, 0\right) . \tag{5}
\end{equation*}
$$

Combining (4) and (5), we obtain $z_{1}=v_{1}$. Therefore, φ acts as an isometry between subspaces of the form $X_{a_{1}}^{2}, a_{1} \in X_{1}$. Denote by g_{2} the restriction of φ on $X_{y_{1}}^{2}$. Then $z_{2}=g_{2}\left(y_{2}\right)$. Assume now that $h_{2} \neq g_{2}\left(b_{2}\right)$. Using (2) we get

$$
\begin{gather*}
d_{\Phi}\left(\left(y_{1}, b_{2}\right),\left(b_{1}, b_{2}\right)\right)=\Phi\left(d_{1}\left(y_{1}, b_{1}\right), 0\right) \leq \sup _{q_{1} \in C_{1}, q_{1} \neq 0} \Phi\left(q_{1}, 0\right), \tag{6}\\
d_{\Phi}\left(\varphi\left(y_{1}, b_{2}\right), \varphi\left(b_{1}, b_{2}\right)\right)=d_{\Phi}\left(\left(z_{1}, b_{2}^{g_{2}}\right),\left(h_{1}, h_{2}\right)\right)=\Phi\left(d_{1}\left(z_{1}, h_{1}\right), d_{2}\left(b_{2}^{g_{2}}, h_{2}\right)\right)=\Phi\left(d_{1}\left(z_{1}, h_{1}\right), 0\right)+\Phi\left(0, d_{2}\left(b_{2}^{g_{2}}, h_{2}\right)\right) \\
\geq \inf _{q_{1} \in C_{1}, q_{1} \neq 0} \Phi\left(q_{1}, 0\right)+\sup _{q_{2} \in C_{2}} \Phi\left(0, q_{2}\right)>\frac{1}{2} \sup _{q_{1} \in C_{1}} \Phi\left(q_{1}, 0\right)+\frac{1}{2} \sup _{q_{1} \in C_{1}} \Phi\left(q_{1}, 0\right)=\sup _{q_{1} \in C_{1}} \Phi\left(q_{1}, 0\right) . \tag{7}
\end{gather*}
$$

Combining (6) and (7), we obtain $h_{2}=g_{2}\left(b_{2}\right)$. Therefore, the isometry φ acts on each subspace of the form $X_{a_{1}}^{2}, a_{1} \in X_{1}$, as g_{2}. From Lemma 3.1 it follows, that $g_{1} \in \operatorname{Isom} X_{a_{2}}^{1}, g_{2} \in \operatorname{Isom} X_{a_{1}}^{2}$ for any $\left(a_{1}, a_{2}\right) \in X_{1} \times X_{2}$. Finally, for arbitrary $\left(x_{1}, x_{2}\right) \in X_{1} \times X_{2}$ we have

$$
\varphi\left(x_{1}, x_{2}\right)=\left(x_{1}, x_{2}\right)^{\left(g_{1}, g_{2}\right)}=\left(x_{1}^{g_{1}}, x_{2}^{g_{2}}\right)
$$

Corollary 3.3.

Let $\Phi:[0, \infty)^{2} \rightarrow[0, \infty)$ be an admissible function, and let $\left(X_{1}, d_{1}\right),\left(X_{2}, d_{2}\right)$ be metric spaces. Assume that Φ satisfies (2) and the following condition holds:

$$
\Phi\left(q_{1}, q_{2}\right)=\Phi\left(q_{1}, 0\right)+\Phi\left(0, q_{2}\right)
$$

If Isom $X_{a_{2}}^{1}=\operatorname{Isom} X_{1}$, Isom $X_{a_{1}}^{2}=\operatorname{Isom} X_{2}$ for some $\left(a_{1}, a_{2}\right) \in X_{1} \times X_{2}$, then

$$
(\operatorname{Isom} X, X) \simeq\left(\operatorname{Isom} X_{1}, X_{1}\right) \times\left(\operatorname{Isom} X_{2}, X_{2}\right)
$$

Example 3.4.

Let $\left(X_{1}, d_{1}\right)$ and $\left(X_{2}, d_{2}\right)$ be uniformly discrete metric spaces of finite diameters D_{1}, D_{2} respectively. And let r_{1}, r_{2} be positive numbers, such that for arbitrary points $x_{i}, y_{i} \in X_{i}, x_{i} \neq y_{2}$, the inequalities $d_{i}\left(x_{i}, y_{i}\right) \geq r_{i}$ hold, $i=1$, 2. Denote $\Phi_{1}\left(q_{1}, q_{2}\right)=q_{1}+q_{2}$. Then the function $\Phi_{1}\left(q_{1}, q_{2}\right)$ is admissible. If the inequalities

$$
r_{1}>D_{2} \geq r_{2}>\frac{1}{2} D_{1} \quad \text { or } \quad r_{2}>D_{1} \geq r_{1}>\frac{1}{2} D_{2}
$$

hold, then the inequalities (2) hold as well. Therefore

$$
\operatorname{Isom}\left(X_{1} \times X_{2}, d_{\Phi_{1}}\right) \simeq \operatorname{Isom} X_{1} \times \operatorname{Isom} X_{2}
$$

Example 3.5.

Let $\left(X_{1}, d_{1}\right)$ and $\left(X_{2}, d_{2}\right)$ be metric spaces. Let

$$
\Phi_{2}\left(q_{1}, q_{2}\right)= \begin{cases}0 & \text { if } \quad q_{1}=q_{2}=0, \\ 4 & \text { if } \quad q_{1} \neq 0, q_{2}=0, \\ 3 & \text { if } \quad q_{1}=0, q_{2} \neq 0, \\ 7 & \text { in other cases. }\end{cases}
$$

Then

$$
\operatorname{Isom}\left(X_{1} \times X_{2}, d_{\Phi_{2}}\right) \simeq S_{\left|X_{1}\right|} \times S_{\left|X_{2}\right|} .
$$

4. Wreath products of groups and Φ-products

In this section we consider Φ-products $\left(X_{1} \times \cdots \times X_{n}, d_{\phi}\right)$ of n metric spaces $\left(X_{1}, d_{1}\right), \ldots,\left(X_{n}, d_{n}\right), n \geq 2$. Let us recall the definition of the wreath product of transformation groups. Let $\left(G_{1}, X_{1}\right), \ldots,\left(G_{n}, X_{n}\right)$ be a sequence of transformation groups. Following [7], the transformation group $\left(G, \prod_{i=1}^{n} X_{i}\right)$ is called the wreath products of groups $\left(G_{1}, X_{1}\right), \ldots,\left(G_{n}, X_{n}\right)$ if for all elements $u \in G$ the following conditions hold:

1) if $\left(x_{1}, \ldots, x_{n}\right)^{u}=\left(y_{1}, \ldots, y_{n}\right)$, then for all $i, 1 \leq i \leq n$, the value of y_{i} depends only on x_{1}, \ldots, x_{i};
2) for fixed x_{1}, \ldots, x_{i-1} the mapping $g_{i}\left(x_{1}, \ldots, x_{i-1}\right)$ defined by the equality

$$
g_{i}\left(x_{1}, \ldots, x_{i-1}\right)\left(x_{i}\right)=y_{i}, \quad x_{i} \in X_{i},
$$

is a permutation on the set X_{i} which belongs to G_{i}. Denote the wreath products of groups $\left(G_{1}, X_{1}\right), \ldots,\left(G_{n}, X_{n}\right)$ by $\chi_{i=1}^{n}\left(G_{i}, X_{i}\right)$.

It follows from this definition that each element $u \in G$ can be represented as a so-called table $u=\left[g_{1}, g_{2}\left(x_{1}\right), \ldots\right.$, $\left.g_{n}\left(x_{1}, \ldots, x_{n-1}\right)\right]$, where $g_{1} \in G_{1}, g_{i}\left(x_{1}, \ldots, x_{i-1}\right) \in G_{i}^{X_{1} \times \cdots \times x_{i-1}}, 2 \leq i \leq n$. An element $u \in G$ acts on $\left(x_{1}, \ldots, x_{n}\right) \in$ $\prod_{i=1}^{n} X_{i}$ by the rule

$$
\left(x_{1}, \ldots, x_{n}\right)^{u}=\left(x_{1}^{g_{1}}, x_{2}^{g_{2}\left(m_{1}\right)}, \ldots, x_{n}^{g_{n}\left(x_{1}, \ldots, x_{n-1}\right)}\right) .
$$

We can consider the space δT of paths in a rooted level homogeneous tree T as some Φ-product of discrete metric spaces. Indeed, let T be a finite n-levels rooted tree with root v_{0}. Recall that a rooted tree T is called level homogenous [4] if it is homogenous on every level. Such a tree is uniquely determined by its level index, i.e. by a finite sequence of cardinal numbers $\left[k_{0} ; k_{1} ; k_{2} ; \ldots ; k_{n}\right]$, where k_{i} is the number of edges joining a vertex of the i-th level with vertices of the $(i+1)$-st level. A rooted path is a finite sequence of vertices $\left(v_{0}, v_{1}, \ldots, v_{n}\right)$ such that $\left\{v_{i}, v_{i+1}\right\} \in E(T)$ for every i, $0 \leq i \leq n-1$. The metric space δT is defined to be the set of all rooted paths of T equipped with a natural ultrametric

$$
\rho\left(\gamma_{1}, v_{2}\right)=\frac{1}{m+1}
$$

where m is the length of the maximal common part of rooted paths γ_{1} and γ_{2}.
Let now $\left(X_{1}, d_{1}\right), \ldots,\left(X_{n}, d_{n}\right)$ be discrete spaces, i.e., for different points $u, v \in X_{i}, d_{i}(u, v)=1,1 \leq i \leq n$. And let $\left|X_{i}\right|=k_{i}, 1 \leq i \leq n$. We can introduce the function $\Phi_{3}:[0, \infty)^{n} \rightarrow[0, \infty)$ putting

$$
\Phi_{3}\left(q_{1}, \ldots, q_{n}\right)= \begin{cases}q_{1} & \text { if } \quad q_{1} \neq 0 \\ \frac{1}{2} q_{2} & \text { if } \quad q_{1}=0 \text { and } q_{2} \neq 0 \\ \ldots & \\ \frac{1}{n} q_{n} & \text { if } \quad q_{1}=\ldots=q_{n-1}=0 \text { and } q_{n} \neq 0 \\ 0 & \text { if } q_{1}=\ldots=q_{n}=0\end{cases}
$$

It is clear that Φ_{3} is admissible. Therefore, one can consider the Φ_{3}-product of the spaces X_{1}, \ldots, X_{n}.
It is easy to see that the space δT of paths in the rooted level homogeneous tree T and the Φ_{3}-product of discrete metric spaces X_{1}, \ldots, X_{n} are isometric. It is well known that the isometry group of the space δT is isomorphic as a permutation group to the wreath product of symmetric groups $S_{k_{i}, i}=1, \ldots, n$. Therefore, the isometry group of the space $\left(X_{1} \times \cdots \times X_{n}, d_{\Phi_{3}}\right)$ is isomorphic as a permutation group to the wreath product of isometry groups of discrete spaces $X_{i}, i=1, \ldots, n$. In this section we generalize this result by extending the class of metric spaces and introducing restrictions on the function Φ.

Let now $\left(X_{i}, d_{i}\right), i=1, \ldots, n$, be arbitrary metric spaces. And let as before C_{i} be the set of values of the metric d_{i}, $1 \leq i \leq n$. Assume that there exist functions $f_{i}:[0, \infty) \rightarrow[0, \infty), 1 \leq i \leq n$, such that

$$
\Phi\left(q_{1}, \ldots, q_{n}\right)= \begin{cases}f_{1}\left(q_{1}\right) & \text { if } q_{1} \neq 0 \tag{8}\\ f_{2}\left(q_{2}\right) & \text { if } q_{1}=0 \text { and } q_{2} \neq 0 \\ \ldots & \text { if } q_{1}=\ldots=q_{n-1}=0 \text { and } q_{n} \neq 0 \\ f_{n}\left(q_{n}\right) & \text { if } q_{1}=\ldots=q_{n}=0 \\ 0 & \end{cases}
$$

for arbitrary $q_{i} \geq 0,1 \leq i \leq n$. For each $i, 1 \leq i \leq n$, denote by \widehat{X}_{i} the space $\left(X_{i}, \widehat{d}_{i}\right)$, where for $u, v \in X_{i}$,

$$
\widehat{d}_{i}(u, v)= \begin{cases}f_{i}\left(d_{i}(u, v)\right) & \text { if } u \neq v \\ 0 & \text { otherwise }\end{cases}
$$

Assume that for all $i, 1 \leq i \leq n-1$,

$$
\begin{equation*}
\inf _{q_{i} \in C_{i}, q_{i} \neq 0} f_{i}\left(q_{i}\right)>\sup _{q_{i+1} \in C_{i+1}} f_{i+1}\left(q_{i+1}\right) \tag{9}
\end{equation*}
$$

Theorem 4.1.

Let $\Phi:[0, \infty)^{n} \rightarrow[0, \infty)$ be an admissible function such that conditions (8) and (9) hold. Then the isometry group of the Φ-product X of metric spaces $X_{1}, X_{2}, \ldots, X_{n}$ is isomorphic as a permutation group to the wreath product of isometry groups of spaces $\widehat{X}_{i}, i=1, \ldots, n$,

$$
\left(\operatorname{lsom}\left(X, d_{\Phi}\right), X\right) \simeq \iota_{i=1}^{n}\left(\operatorname{lsom} \widehat{X}_{i}, X_{i}\right)
$$

Proof. Consider arbitrary

$$
\varphi=\left[g_{1}, g_{2}\left(x_{1}\right), \ldots, g_{n}\left(x_{1}, \ldots, x_{n-1}\right)\right] \in \imath_{i=1}^{n} \operatorname{lsom} \widehat{X}_{i}
$$

We shall show that φ is an isometry of $\left(X, d_{\Phi}\right)$. By the definition of the wreath product of permutation groups [7] the element φ acts on $\prod_{i=1}^{n} X_{i}$. Therefore, it is sufficient to show that φ preserves the metric d_{Φ}. Indeed,

$$
\begin{aligned}
d_{\Phi}\left(\varphi\left(x_{1}, x_{2}, \ldots, x_{n}\right), \varphi\left(y_{1}, y_{2}, \ldots, y_{n}\right)\right) & =d_{\Phi}\left(\left(x_{1}^{g_{1}}, x_{2}^{g_{2}\left(x_{1}\right)}, \ldots, x_{n}^{g_{n}\left(x_{1}, \ldots, x_{n-1}\right)}\right),\left(y_{1}^{g_{1}}, y_{2}^{g_{2}\left(y_{1}\right)}, \ldots, y_{n}^{g_{n}\left(y_{1}, \ldots, y_{n-1}\right)}\right)\right) \\
& =\Phi\left(d_{1}\left(x_{1}^{g_{1}}, y_{1}^{g_{1}}\right), d_{2}\left(x_{2}^{g_{2}\left(x_{1}\right)}, y_{2}^{g_{2}\left(y_{1}\right)}\right), \ldots, d_{n}\left(x_{n}^{g_{n}\left(x_{1}, \ldots, x_{n-1}\right)}, y_{n}^{g_{n}\left(y_{1}, \ldots, y_{n-1}\right)}\right)\right)
\end{aligned}
$$

Using (8), we have

$$
d_{\Phi}\left(\varphi\left(x_{1}, x_{2}, \ldots, x_{n}\right), \varphi\left(y_{1}, y_{2}, \ldots, y_{n}\right)\right)= \begin{cases}f_{1}\left(d_{1}\left(x_{1}^{g_{1}}, y_{1}^{g_{1}}\right)\right) & \text { if } x_{1}^{g_{1}} \neq y_{1}^{g_{1}}, \tag{10}\\ f_{2}\left(d_{2}\left(x_{2}^{g_{2}\left(x_{1}\right)}, y_{2}^{g_{2}\left(y_{1}\right)}\right)\right) & \text { if } x_{1}^{g_{1}}=y_{1}^{g_{1}}, x_{2}^{g_{2}\left(x_{1}\right)} \neq y_{2}^{g_{2}\left(y_{1}\right)}, \\ \ldots & \text { if } x_{1}^{g_{1}}=y_{1}^{g_{1}}, \ldots, x_{n}^{g_{n}\left(x_{1}, \ldots x_{n-1}\right)}=y_{n}^{g_{n}\left(y_{1}, \ldots y_{n-1}\right)} .\end{cases}
$$

But $g_{1} \in \operatorname{Isom} \widehat{X}_{1}$. Then $x_{1}^{g_{1}}=y_{1}^{g_{1}}$ iff $x_{1}=y_{1}$. Hence, $x_{1}^{g_{1}}=y_{1}^{g_{1}}$ iff $g_{2}\left(x_{1}\right)=g_{2}\left(y_{1}\right)$, and so on. With similar reasoning, using (10), we get

$$
d_{\Phi}\left(\varphi\left(x_{1}, \ldots, x_{n}\right), \varphi\left(y_{1}, \ldots, y_{n}\right)\right)= \begin{cases}f_{1}\left(d_{1}\left(x_{1}^{g_{1}}, y_{1}^{g_{1}}\right)\right) & \text { if } x_{1} \neq y_{1}, \\ f_{2}\left(d_{2}\left(x_{2}^{g_{2}\left(x_{1}\right)}, y_{2}^{g_{2}\left(x_{1}\right)}\right)\right) & \text { if } x_{1}=y_{1} \text { and } x_{2} \neq y_{2} \\ \ldots & \text { if } x_{1}=y_{1}, \ldots, x_{n}=y_{n} \\ 0 & \end{cases}
$$

As g_{1} is an isometry of $\widehat{X}_{1}, f_{1}\left(d_{1}\left(x_{1}^{g_{1}}, y_{1}^{g_{1}}\right)\right)=f_{1}\left(d_{1}\left(x_{1}, y_{1}\right)\right)$. Since $g_{i}\left(x_{1}, \ldots, x_{i-1}\right) \in \operatorname{lsom} \widehat{X}_{i}$ the following equalities hold:

$$
f_{i}\left(d_{i}\left(x_{i}^{g_{i}\left(x_{1}, \ldots, x_{i-1}\right)}, y_{i}^{g_{i}\left(x_{1}, \ldots, x_{i-1}\right)}\right)\right)=f_{i}\left(d_{i}\left(x_{i}, y_{i}\right)\right), \quad 2 \leq i \leq n .
$$

Therefore,

$$
\begin{aligned}
& d_{\Phi}\left(\varphi\left(x_{1}, \ldots, x_{n}\right), \varphi\left(y_{1}, \ldots, y_{n}\right)\right)= \begin{cases}f_{1}\left(d_{1}\left(x_{1}, y_{1}\right)\right) & \text { if } x_{1} \neq y_{1}, \\
f_{2}\left(d_{2}\left(x_{2}, y_{2}\right)\right) & \text { if } x_{1}=y_{1} \text { and } x_{2} \neq y_{2}, \\
\ldots & \\
f_{n}\left(d_{n}\left(x_{n}, y_{n}\right)\right) & \text { if } x_{1}=y_{1}, \ldots, x_{n-1}=y_{n-1}, x_{n} \neq y_{n}, \\
0 & \text { if } x_{1}=y_{1}, \ldots, x_{n}=y_{n},\end{cases} \\
& =d_{\Phi}\left(\left(x_{1}, \ldots, x_{n}\right),\left(y_{1}, \ldots, y_{n}\right)\right) \text {. }
\end{aligned}
$$

Let now φ be an isometry of $\left(X, d_{\phi}\right)$. Fix a point $\left(x_{1}, \ldots, x_{n}\right)$ from X and assume that $\varphi\left(x_{1}, \ldots, x_{n}\right)=\left(z_{1}, \ldots, z_{n}\right)$. Let $\varphi\left(y_{1}, y_{2}, \ldots, y_{n}\right)=\left(w_{1}, w_{2}, \ldots, w_{n}\right)$ for some $y_{i} \in X_{i}, 1 \leq i \leq n,\left(y_{1}, \ldots, y_{n}\right) \neq\left(x_{1}, \ldots, x_{n}\right)$. We have

$$
\begin{equation*}
d_{\Phi}\left(\left(x_{1}, x_{2}, \ldots, x_{n}\right),\left(y_{1}, y_{2}, \ldots, y_{n}\right)\right)=\Phi\left(d_{1}\left(x_{1}, y_{1}\right), d_{2}\left(x_{2}, y_{2}\right), \ldots, d_{n}\left(x_{n}, y_{n}\right)\right)=f_{j}\left(d_{j}\left(x_{j}, y_{j}\right)\right) \tag{11}
\end{equation*}
$$

where j is the smallest number such that $y_{1}=x_{1}, \ldots, y_{j-1}=x_{j-1}, y_{j} \neq x_{j}$. Using (8), we obtain

$$
\begin{align*}
d_{\Phi}\left(\varphi\left(x_{1}, x_{2}, \ldots, x_{n}\right), \varphi\left(x_{1}, y_{2}, \ldots, y_{n}\right)\right) & =d_{\Phi}\left(\left(z_{1}, z_{2}, \ldots, z_{n}\right),\left(w_{1}, w_{2}, \ldots, w_{n}\right)\right) \tag{12}\\
& =\Phi\left(d_{1}\left(z_{1}, w_{1}\right), d_{2}\left(z_{2}, w_{2}\right), \ldots, d_{n}\left(z_{n}, w_{n}\right)\right)=f_{k}\left(d_{k}\left(x_{k}, y_{k}\right)\right)
\end{align*}
$$

where k is the smallest number such that $z_{1}=w_{1}, \ldots, z_{k-1}=w_{k-1}, z_{k} \neq w_{k}$. Combining (11), (12) and (9), we get $j=k$. This means that for all $i, 1 \leq i \leq n$, the value y_{i} depends only on x_{1}, \ldots, x_{i} and for fixed x_{1}, \ldots, x_{i-1} the mapping φ acts on X_{i} as some isometry $g_{i}\left(x_{1}, \ldots, x_{i-1}\right)$. Therefore, there exists a table

$$
\left[g_{1}, g_{2}\left(x_{1}\right), \ldots, g_{n}\left(x_{1}, \ldots, x_{n-1}\right)\right]
$$

such that $g_{1} \in \operatorname{Isom} \widehat{X}_{1}, g_{i}\left(x_{1}, \ldots, x_{i-1}\right) \in\left(\operatorname{Isom} \widehat{X}_{i}\right)^{x_{1} \times \ldots \times x_{i-1}}$. And the table $\left[g_{1}, g_{2}\left(x_{1}\right), \ldots, g_{n}\left(x_{1}, \ldots, x_{n-1}\right)\right]$ acts on X as φ does. This completes the proof.

Corollary 4.2.

Let $\Phi:[0, \infty)^{n} \rightarrow[0, \infty)$ be an admissible function such that conditions (8) and (9) hold. If

$$
\operatorname{Isom}\left(X_{i}, f_{i}\left(d_{i}\right)\right)=\operatorname{Isom}\left(X_{i}, d_{i}\right)
$$

for all $i, 1 \leq i \leq n$, then

$$
(\operatorname{Isom} X, X) \simeq \iota_{i=1}^{n}\left(\operatorname{Isom} X_{i}, X_{i}\right) .
$$

Example 4.3.

Let $\left(X_{1}, d_{1}\right)$ and $\left(X_{2}, d_{2}\right)$ be metric spaces of finite diameters D_{1}, D_{2}. Assume that there exists a positive number r such that for arbitrary points $x_{1}, x_{2} \in X_{1}, x_{1} \neq x_{2}$, the inequality $d_{1}\left(x_{1}, x_{2}\right) \geq r$ holds. Let $\Phi_{3}\left(q_{1}, q_{2}\right)=\max \left(q_{1}, q_{2}\right)$. If $r>D_{2}$, then $\operatorname{Isom}\left(X_{1} \times X_{2}, d_{\Phi_{3}}\right) \simeq\left(\operatorname{Isom} X_{1}\right)$ 2 (Isom $\left.X_{2}\right)$.

Example 4.4.

Let $X_{i}=\mathbb{Z}$ and d_{i} be the Euclidean distance, $1 \leq i \leq n$. It is easy to see that the function

$$
\Phi_{5}\left(q_{1}, \ldots, q_{n}\right)= \begin{cases}n+1-\frac{1}{q_{1}+1} & \text { if } q_{1} \neq 0, \\ n-\frac{1}{q_{2}+1} & \text { if } q_{1}=0 \text { and } q_{2} \neq 0, \\ \ldots & \text { if } q_{1}=\ldots=q_{n-1}=0 \text { and } q_{n} \neq 0, \\ 2-\frac{1}{q_{n}+1} & \text { if } q_{1}=\ldots=q_{n}=0,\end{cases}
$$

is admissible and satisfies (8) and (9). Therefore, one can consider the Φ_{5}-product ($\mathbb{Z} \times \cdots \times \mathbb{Z}, d_{\Phi_{5}}$) of $X_{i}, 1 \leq i \leq n$. The set of values of the metric $d_{\Phi_{5}}$ is bounded, while each d_{i} takes arbitrary large values.
It follows from Theorem 4.1 that the isometry group of $\left(\mathbb{Z} \times \cdots \times \mathbb{Z}, d_{\Phi_{5}}\right)$ is isomorphic as a permutation group to the wreath product of isometry groups of $\left(X_{i}, \widehat{d}_{i}\right), i=1, \ldots, n$, where for arbitrary $u, v \in X_{i}$,

$$
\widehat{d}_{i}(u, v)= \begin{cases}n+2-i-\frac{1}{d_{i}(u, v)+1} & \text { if } u \neq v \\ 0 & \text { in other cases }\end{cases}
$$

Recall, metric spaces $\left(Y, d_{1}\right)$ and $\left(Y, d_{2}\right)$ are called isomorphic [8] if there exists a scale, that is a strictly increasing continuous function $s: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}, s(0)=0$, such that $d_{1}=s\left(d_{2}\right)$. It is easy to observe that if metric spaces $\left(Y, d_{1}\right)$ and $\left(Y, d_{2}\right)$ are isomorphic then their isometry groups $\operatorname{Isom}\left(Y, d_{1}\right)$ and $\operatorname{Isom}\left(Y, d_{2}\right)$ are equal.
For each $i, 1 \leq i \leq n$, the spaces $\left(\mathbb{Z}, \widehat{d}_{i}\right)$ and $\left(\mathbb{Z}, d_{i}\right)$ are isomorphic. Indeed, if we consider a scale $s: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$given by the equality

$$
s(t)= \begin{cases}n+2-i-\frac{1}{t+1} & \text { if } t \geq 1 \\ \left(n+\frac{3}{2}-i\right)^{t} & \text { if } \quad 0 \leq t \leq 1\end{cases}
$$

then $\widehat{d}_{i}=s\left(d_{i}\right)$ on \mathbb{Z}. Therefore, the isometry group of the space $\left(\mathbb{Z}, \widehat{d}_{i}\right)$ is isomorphic to the infinite dihedral group D_{∞}. Hence, the isometry group of $\left(\mathbb{Z} \times \cdots \times \mathbb{Z}, d_{\Phi_{5}}\right)$ is isomorphic as a permutation group to the wreath product of n infinite dihedral groups D_{∞} :

$$
\left(\operatorname{Isom}\left(\mathbb{Z} \times \cdots \times \mathbb{Z}, d_{\Phi_{5}}\right), \mathbb{Z} \times \cdots \times \mathbb{Z}\right) \simeq{\tau_{i=1}^{n}\left(D_{\infty}, \mathbb{Z}\right) .}
$$

References

[1] Avgustinovich S., Fon-Der-Flaass D., Cartesian products of graphs and metric spaces, European J. Combin., 2000, 21(7), 847-851
[2] Bernig A., Foertsch T., Schroeder V., Non standard metric products, Beiträge Algebra Geom., 2003, 44(2), 499-510
[3] Chen C.-H., Warped products of metric spaces of curvature bounded from above, Trans. Amer. Math. Soc., 1999, 351(12), 4727-4740
[4] Gawron P.W., Nekrashevych V.V., Sushchansky V.I., Conjugation in tree automorphism groups, Internat. J. Algebra Comput., 2001, 11 (5), 529-547
[5] Moszyńska M., On the uniqueness problem for metric products, Glas. Mat. Ser. III, 1992, 27(47)(1), 145-158
[6] Oliynyk B., Wreath product of metric spaces, Algebra Discrete Math., 2007, 4, 123-130
[7] Kalužnin L.A., Beleckij P.M., Fejnberg V.Z., Kranzprodukte, Teubner-Texte Math., 101, Teubner, Leipzig, 1987
[8] Schoenberg I.J., Metric spaces and completely monotone functions, Ann. Math., 1938, 39(4), 811-841

[^0]: * E-mail: bogdana.oliynyk@gmail.com

